Change search
ReferencesLink to record
Permanent link

Direct link
Enantiomer Fractions Are Preferred to Enantiomer Ratios for Describing Chiral Signatures in Environmental Analysis
Umeå University, Faculty of Science and Technology, Department of Chemistry.
2000 (English)In: Environmental Science and Technology, ISSN 0013-936X, E-ISSN 1520-5851, Vol. 34, no 1, 218-220 p.Article in journal (Refereed) Published
Abstract [en]

The enantiomer ratio (ER) is currently the standard descriptor of enantiomeric (chiral) signatures for environmental samples. In this paper, we argue for the adoption of the enantiomer fraction (EF) as the standard descriptor by showing drawbacks to the use of ER. The enantiomer fraction is superior because it provides a more meaningful representation of graphical data and is more easily employed in mathematical fate expressions. Several useful expressions are presented that allow EF to be used for tracking and apportioning chemical movement between environmental compartments and for investigating microbial degradation processes.

Place, publisher, year, edition, pages
American Chemical Society (ACS), 2000. Vol. 34, no 1, 218-220 p.
National Category
Chemical Sciences
URN: urn:nbn:se:umu:diva-5445DOI: 10.1021/es9906958OAI: diva2:144960
Available from: 2002-01-25 Created: 2002-01-25 Last updated: 2012-05-24Bibliographically approved
In thesis
1. Enantiospecific Analysis and Environmental Behavior of Chiral Persistent Organic Pollutants (POPs)
Open this publication in new window or tab >>Enantiospecific Analysis and Environmental Behavior of Chiral Persistent Organic Pollutants (POPs)
2002 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Many persistent organic pollutants (POPs) are chiral. These pollutants are generally released into the environment as racemates, but frequently undergo alterations in enantiomeric composition as soon as they are subjected to life chemistry processes. Enantiospecific analysis of chiral POPs is important since enantiomers of chiral compounds often exhibit differences in biological activity, and most biochemical processes in nature are stereospecific. For abiotic processes, such as air-water gas exchange, deposition and long-range air transport, enantiomeric patterns of POPs may be used as chemical markers.

The aim of the work described in this thesis was to improve our knowledge about the presence and fate of enantiomers of chiral POPs inthe environment to provide a sound basis for accurate risk assessment. The compounds included were organochlorine (OC) pesticides (α-HCH, chlordanes and o,p’-DDT), atropisomeric PCBs and some of their respective metabolites (heptachlor-exo-epoxide, oxychlordane and MeSO2-PCBs).

Analytical methods for chiral PCBs were developed, and the elution sequences of (+) and (−)-enantiomers were determined. Enantiomeric fraction (EF) was proposed as a better reflector of chiral composition than the conventional enantiomeric ratio (ER).

Enantioselective bioprocessing in various compartments was studied, with the main emphasis on factors controlling chiral composition in biota Correlations were detected between changes in EFs and differences in trophic levels. The changes were, however, not consistent for all compounds. Instead, the enantiomeric composition was found to be species-specific in the polar bear food chain and in aquatic species from the Baltic Sea. The EFs of some POPs in Baltic seals were related tonutritional status and biotransformation capacity.

Enantiomeric and isomeric patterns were used to investigate abiotic processes in the southern Baltic Sea environment and EFs were used tostudy soil as a source of atmospheric heptachlor-exo-epoxide.

90 p.
urn:nbn:se:umu:diva-9 (URN)91-7305-162-4 (ISBN)
Public defence
Available from: 2002-01-25 Created: 2002-01-25 Last updated: 2012-06-28Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Wiberg, Karin
By organisation
Department of Chemistry
In the same journal
Environmental Science and Technology
Chemical Sciences

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 56 hits
ReferencesLink to record
Permanent link

Direct link