Change search
ReferencesLink to record
Permanent link

Direct link
The Diamond Lemma for Power Series Algebras
Umeå University, Faculty of Science and Technology, Department of mathematics.
2002 (English)Doctoral thesis, monograph (Other academic)
Abstract [en]

The main result in this thesis is the generalisation of Bergman's diamond lemma for ring theory to power series rings. This generalisation makes it possible to treat problems in which there arise infinite descending chains. Several results in the literature are shown to be special cases of this diamond lemma and examples are given of interesting problems which could not previously be treated. One of these examples provides a general construction of a normed skew field in which a custom commutation relation holds.

There is also a general result on the structure of totally ordered semigroups, demonstrating that all semigroups with an archimedean element has a (up to a scaling factor) unique order-preserving homomorphism to the real numbers. This helps analyse the concept of filtered structure. It is shown that whereas filtered structures can be used to induce pretty much any zero-dimensional linear topology, a real-valued norm suffices for the definition of those topologies that have a reasonable relation to the multiplication operation.

The thesis also contains elementary results on degree (as of polynomials) functions, norms on algebras (in particular ultranorms), (Birkhoff) orthogonality in modules, and construction of semigroup partial orders from ditto quasiorders.

Place, publisher, year, edition, pages
Umeå: Umeå universitet , 2002. , 228 p.
Doctoral thesis / Umeå University, Department of Mathematics, ISSN 1102-8300 ; 23
Keyword [en]
Mathematical analysis, diamond lemma, power series algebra, Gröbner basis, embedding into skew fields, archimedean element in semigroup, q-deformed Heisenberg--Weyl algebra, polynomial degree, ring norm, Birkhoff orthogonality, filtered structure
Keyword [sv]
Matematisk analys
National Category
Mathematical Analysis
Research subject
URN: urn:nbn:se:umu:diva-92ISBN: 91-7305-327-9OAI: diva2:145049
Public defence
2002-10-22, MA 121, MIT-huset, Umeå, 13:15
Available from: 2002-01-01 Created: 2002-01-01 Last updated: 2012-10-01Bibliographically approved

Open Access in DiVA

fulltext(1448 kB)1066 downloads
File information
File name FULLTEXT01.pdfFile size 1448 kBChecksum MD5
Type fulltextMimetype application/pdf

Search in DiVA

By author/editor
Hellström, Lars
By organisation
Department of mathematics
Mathematical Analysis

Search outside of DiVA

GoogleGoogle Scholar
Total: 1066 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Total: 416 hits
ReferencesLink to record
Permanent link

Direct link