Change search
ReferencesLink to record
Permanent link

Direct link
Dual by-pass mechanisms of RNA polymerase mutants: implications for ppGpp- and DksA-mediated control of σ54-dependent transcription
Umeå University, Faculty of Medicine, Molecular Biology.
Show others and affiliations
(English)In: Journal of Biological Chemistry, ISSN 0021-9258Article in journal (Refereed) Submitted
URN: urn:nbn:se:umu:diva-5551OAI: diva2:145098
Available from: 2006-11-16 Created: 2006-11-16 Last updated: 2010-03-04Bibliographically approved
In thesis
1. On the role of ppGpp and DksA mediated control of σ54-dependent transcription
Open this publication in new window or tab >>On the role of ppGpp and DksA mediated control of σ54-dependent transcription
2006 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

The σ54-dependent Po promoter drives transcription of an operon that encodes a suite of enzymes for (methyl)phenols catabolism. Transcription from Po is controlled by the sensor-activator DmpR that binds (methyl)phenol effectors to take up its active form. The σ54 factor imposes kinetic constraints on transcriptional initiation by the σ54-RNA polymerase holoenzyme which cannot undergo transition from the closed complex without the aid of the activator. DmpR acts from a distance on promoter-bound σ54-holoenzyme, and physical contact between the two players is facilitated by the DNA-bending protein IHF. The bacterial alarmone ppGpp and DksA directly bind RNA polymerase to have far reaching consequences on global transcriptional capacity in the cell. The work presented in this thesis uses the DmpR-regulated Po promoter as a framework to dissect how these two regulatory molecules act in vivo to control the functioning of σ54-dependent transcription. The strategies employed involved development of i) a series of hybrid σ54-promoters that could be directly compared and in which key DNA elements could be manipulated ii) mutants incapable of synthesizing ppGpp and/or DksA, iii) reconstituted in vitro transcription systems, and iv) genetic selection and purification of mutant RNA polymerases that bypass the need for ppGpp and DksA in vivo. The collective results presented show that the effects of ppGpp and DksA on σ54-dependent transcription are major, with simultaneous loss of these regulatory molecules essentially abolishing σ54-transcription in intact cells. However, neither of these regulatory molecules have discernable effects on in vitro reconstituted σ54-transcription, suggesting an indirect mechanism of control. The major effects of ppGpp and DksA in vivo cannot be accounted for by consequent changes in the levels of DmpR or other specific proteins needed for σ54-transcription. The data presented here shows i) that the effects of loss of ppGpp and DksA are related to promoter affinity for σ54-holoenzyme, ii) that σ54 is under significant competition with other σ-factors in the cell, and iii) that mutants of σ70, and the beta- and beta prime-subunits of RNA polymerase that can bypass the need for ppGpp and DksA in vivo have defects that would favour the formation of σ54-RNA holoenzyme over that with σ70, and that mimic the effects of ppGpp and DksA for negative regulation of stringent σ70-promoters. A purely passive model for ppGpp/DksA regulation of σ54-dependent transcription that functions through their potent negative effects on transcription from powerful σ70-stringent promoters is presented.

Place, publisher, year, edition, pages
Umeå: Molekylärbiologi (Teknisk-naturvetenskaplig fakultet), 2006. 69 p.
ppGpp, DksA, σ54-transcription, global regulation, E. coli, P. putida
National Category
Biochemistry and Molecular Biology
urn:nbn:se:umu:diva-932 (URN)91-7264-217-3 (ISBN)
Public defence
2006-12-07, Major Groove, 6L, Institutionen för Molekylärbiologi, Umeå Universitet, 90187, Umeå, 09:30 (English)
Available from: 2006-11-16 Created: 2006-11-16 Last updated: 2009-09-30Bibliographically approved

Open Access in DiVA

No full text

Search in DiVA

By author/editor
Shingler, Victoria
By organisation
Molecular Biology
In the same journal
Journal of Biological Chemistry

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Total: 27 hits
ReferencesLink to record
Permanent link

Direct link