Umeå University's logo

umu.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Ni-Co bimetallic coordination effect for long lifetime rechargeable Zn-air battery
Umeå University, Faculty of Science and Technology, Department of Physics.ORCID iD: 0000-0002-5080-8273
Show others and affiliations
2020 (English)In: Journal of Energy Challenges and Mechanics, E-ISSN 2056-9386, Vol. 47, p. 146-154Article in journal (Refereed) Published
Abstract [en]

The development of bifunctional oxygen electrocatalysts with high efficiency, high stability, and low cost is of great significance to the industrialization of rechargeable Zn–air batteries. A widely accepted view is that the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER) follow different catalytic mechanisms, and accordingly they need different active sites for catalysis. Transition metal elements have admirable electronic acceptance ability for coordinating with reactants, and this can weaken the bond energy between reactants, thus promoting the ORR or OER reactions. Herein, the ORR and OER activities of different transition metal supported nitrogen-doped carbon nanotubes were systematically studied and compared. The optimal catalyst for synchronous ORR and OER was obtained by pyrolyzing melamine, cobalt nitrate, and nickel nitrate on carbon nanotubes, called cobalt–nickel supported nitrogen-mixed carbon nanotubes (CoNi–NCNT), which were equipped with two types of high-performance active sites—the Co/Ni–N–C structure for the ORR and CoNi alloy particles for the OER—simultaneously. Remarkably, the optimized CoNi–NCNT exhibited a satisfactory bifunctional catalytic activity for both the ORR and OER. The value of the oxygen electrode activity parameter, ΔE, of CoNi–NCNT was 0.81 V, which surpasses that of catalysts Pt/C and Ir/C, and most of the non-precious metal-based bifunctional electrocatalysts reported in previous literatures. Furthermore, a specially assembled rechargeable Zn–air cell with CoNi–NCNT loaded carbon paper as an air cathode was used to evaluate the practicability. As a result, a superior specific capacity of 744.3 mAh/gZn, a peak power density of 88 mW/cm2, and an excellent rechargeable cycling stability were observed, and these endow the CoNi–NCNT with promising prospects for practical application.

Place, publisher, year, edition, pages
Elsevier, 2020. Vol. 47, p. 146-154
National Category
Materials Chemistry Condensed Matter Physics
Identifiers
URN: urn:nbn:se:umu:diva-173326DOI: 10.1016/j.jechem.2019.12.005ISI: 000540735400005Scopus ID: 2-s2.0-85076925753OAI: oai:DiVA.org:umu-173326DiVA, id: diva2:1451034
Available from: 2020-07-02 Created: 2020-07-02 Last updated: 2023-05-25Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Wågberg, ThomasHu, Guangzhi

Search in DiVA

By author/editor
Wågberg, ThomasHu, Guangzhi
By organisation
Department of Physics
In the same journal
Journal of Energy Challenges and Mechanics
Materials ChemistryCondensed Matter Physics

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 154 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf