umu.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Two-dimensional aggregation of Alzheimer's β-amyloid (1-40) on membrane surfaces: two electrostatically controlled alternative pathways
Umeå University, Faculty of Science and Technology, Chemistry.
Manuscript (Other academic)
Identifiers
URN: urn:nbn:se:umu:diva-5649OAI: oai:DiVA.org:umu-5649DiVA: diva2:145234
Available from: 2007-01-16 Created: 2007-01-16 Last updated: 2010-01-13Bibliographically approved
In thesis
1. Membrane mediated aggregation of amyloid-β protein: a potential key event in Alzheimer's disease
Open this publication in new window or tab >>Membrane mediated aggregation of amyloid-β protein: a potential key event in Alzheimer's disease
2007 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

The pathogenesis of Alzheimer’s disease (AD), the most common senile dementia, is a complex process. A crucial event in AD is the aggregation of amyloid-β protein (Aβ), a cleavage product from the Amyloid Precursor Protein (APP). Aβ40, a common component in amyloid plaques found in patients, aggregates in vitro at concentrations, much higher than the one found in vivo. But in the presence of charged lipid membranes, aggregations occurs at much lower concentration in vitro compared to the membrane-free case. This can be understood due to the ability of Aβ to get electrostatically attracted to target membranes with a pronounced surface potential. This electrostatically driven process accumulates peptide at the membrane surface at concentrations high enough for aggregation while the bulk concentration still remains below threshold. Here, we elucidated the molecular nature of this Aβ-membrane process and its consequences for Aβ misfolding by Circular Dichroism Spectroscopy, Differential Scanning Calorimetry and Nuclear Magnetic Resonance Spectroscopy. First, we revealed by NMR that Aβ40 peptide does indeed interact electrostatically with membranes of negative and positive surface potential. Surprisingly, it even binds to nominal neutral membranes if these contain lipids of opposite charge. Combined NMR and CD studies also revealed that the peptide might be shielded from aggregation when incorporated into the membrane. Moreover, CD studies of Aβ40 added to charged membranes showed that both positively and negatively membranes induce aggregation albeit at different kinetics and finally that macromolecular crowding can both speed up and slow down aggregation of Aβ.

Place, publisher, year, edition, pages
Umeå: Kemi, 2007. 44 p.
Keyword
Alzheimer’s Disease, Aβ40, Circular Dichroism, NMR, Amyloids, Crowding, Peptide-Lipid Interaction
National Category
Physical Chemistry
Identifiers
urn:nbn:se:umu:diva-969 (URN)978-91-7264-236-2 (ISBN)
Public defence
2007-02-09, kb3a9, kbc, Umeå universitet, Umeå, 10:00 (English)
Opponent
Supervisors
Available from: 2007-01-16 Created: 2007-01-16 Last updated: 2009-09-07Bibliographically approved

Open Access in DiVA

No full text

By organisation
Chemistry

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 29 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf