umu.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
XPS of Fast-Frozen Hematite Colloids in NaCl Aqueous Solutions: I. Evidence for the Formation of Multiple Layers of Hydrated Sodium and Chloride Ions Induced by the {001} Basal Plane
Umeå University, Faculty of Science and Technology, Chemistry.
Umeå University, Faculty of Science and Technology, Chemistry.
2007 (English)In: The Journal of Physical Chemistry C, Vol. 111, no 49, 18307-16 p.Article in journal (Refereed) Published
Abstract [en]

The composition of fast-frozen wet pastes of hematite particles of different morphologies equilibrated in NaCl aqueous solutions was investigated by X-ray photoelectron spectroscopy. Two hematite preparations consisted of micrometer-sized platelets with 42% (HEM-1) and 82% (HEM-8) of the surface terminated by the {001} basal plane and a third of spheroids with no recognizable crystal plane (HEM-control). All hematite samples responded to changes in pH (4 and 9) and ionic strength (0, 10, 100 mM), showing that acid/base reactions of surface hydroxyl groups impact the composition of the paste. The HEM-1 and HEM-8 sample exhibited unusually large Na, Cl, and water contents at the highest ionic strength (100 mM) compared to HEM-control and all other minerals studied with this technique previously. The Na 1s and Cl 2p spectra occurred at binding energies typical of hydrated Na+ and Cl- ions and possessed energy-loss features, suggesting a three-dimensional distribution of these ions in the paste. An approximate stochiometric Na/Cl/H2O ratio of 1:1:2 was obtained in all samples in 100 mM NaCl as well as a strong correlation between the these compounds and the fraction of the {001} basal plane present in the hematite particles. The basal plane of hematite is proposed to induce the formation of a hydrated NaCl structure in the fast-frozen pastes, one that is compositionally reminiscent of hydrohalite (NaCl·2H2O), by stabilizing multiple layers of hydrated Na+ and Cl- ions prior to freezing.

Place, publisher, year, edition, pages
2007. Vol. 111, no 49, 18307-16 p.
Identifiers
URN: urn:nbn:se:umu:diva-6174DOI: doi:10.1021/jp075321cOAI: oai:DiVA.org:umu-6174DiVA: diva2:145842
Available from: 2007-12-07 Created: 2007-12-07 Last updated: 2009-11-24Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Authority records BETA

Shchukarev, AndreyBoily, Jean-François

Search in DiVA

By author/editor
Shchukarev, AndreyBoily, Jean-François
By organisation
Chemistry

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 51 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf