Umeå University's logo

umu.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Deep Learning to Enhance Fluorescent Signals in Live Cell Imaging
Umeå University, Faculty of Science and Technology, Department of Physics.ORCID iD: 0000-0002-1898-4453
2020 (English)Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesis
Place, publisher, year, edition, pages
2020.
National Category
Medical Image Processing
Identifiers
URN: urn:nbn:se:umu:diva-175328OAI: oai:DiVA.org:umu-175328DiVA, id: diva2:1470654
External cooperation
Sartorius Stedim Data Analytics AB
Subject / course
Examensarbete i teknisk fysik
Educational program
Master of Science Programme in Engineering Physics
Supervisors
Examiners
Available from: 2020-09-30 Created: 2020-09-25 Last updated: 2024-07-02Bibliographically approved

Open Access in DiVA

fulltext(7996 kB)332 downloads
File information
File name FULLTEXT01.pdfFile size 7996 kBChecksum SHA-512
e1e918c04b457e97aeeda8819c03a03ff931ce377911a37a69c31bdad0db9fc3c8f717c5c34769569f70a5c0a2ff945f868c14e9e2c7d1233c443e00b9a77f1e
Type fulltextMimetype application/pdf

Search in DiVA

By author/editor
Forsgren, Edvin
By organisation
Department of Physics
Medical Image Processing

Search outside of DiVA

GoogleGoogle Scholar
Total: 332 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 908 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf