umu.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
On sampling with desired inclusion probabilities of first and second order
Umeå University, Faculty of Science and Technology, Department of Mathematics and Mathematical Statistics.ORCID iD: 0000-0003-1524-0851
Umeå University, Faculty of Science and Technology, Department of Mathematics and Mathematical Statistics.
2005 (English)Report (Other academic)
Abstract [en]

We present a new simple approximation of target probabilities pi for conditional Poisson sampling to obtain given inclusion probabilities. This approximation is based on the fact that the Sampford design gives inclusion probabilities as desired. Some alternative routines to calculate exact pi-values are presented and compared numerically. Further we derive two methods for achieving prescribed 2nd order inclusion probabilities. First we use a probability function belonging to the exponential family. The parameters of this probability function are determined by using an iterative proportional fitting algorithm. Then we modify the conditional Poisson probability function with an additional quadratic factor.

Place, publisher, year, edition, pages
Umeå: Umeå universitet , 2005. , 22 p.
Series
Research report in mathematical statistics, ISSN 1653-0829 ; 2005:03
National Category
Probability Theory and Statistics
Research subject
Mathematical Statistics
Identifiers
URN: urn:nbn:se:umu:diva-8385OAI: oai:DiVA.org:umu-8385DiVA: diva2:148056
Distributor:
Institutionen för matematik och matematisk statistik, 90187, Umeå
Available from: 2008-01-20 Created: 2008-01-20 Last updated: 2016-03-07Bibliographically approved
In thesis
1. Contributions to the theory of unequal probability sampling
Open this publication in new window or tab >>Contributions to the theory of unequal probability sampling
2009 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

This thesis consists of five papers related to the theory of unequal probability sampling from a finite population. Generally, it is assumed that we wish to make modelassisted inference, i.e. the inclusion probability for each unit in the population is prescribed before the sample is selected. The sample is then selected using some random mechanism, the sampling design. Mostly, the thesis is focused on three particular unequal probability sampling designs, the conditional Poisson (CP-) design, the Sampford design, and the Pareto design. They have different advantages and drawbacks: The CP design is a maximum entropy design but it is difficult to determine sampling parameters which yield prescribed inclusion probabilities, the Sampford design yields prescribed inclusion probabilities but may be hard to sample from, and the Pareto design makes sample selection very easy but it is very difficult to determine sampling parameters which yield prescribed inclusion probabilities. These three designs are compared probabilistically, and found to be close to each other under certain conditions. In particular the Sampford and Pareto designs are probabilistically close to each other. Some effort is devoted to analytically adjusting the CP and Pareto designs so that they yield inclusion probabilities close to the prescribed ones. The result of the adjustments are in general very good. Some iterative procedures are suggested to improve the results even further. Further, balanced unequal probability sampling is considered. In this kind of sampling, samples are given a positive probability of selection only if they satisfy some balancing conditions. The balancing conditions are given by information from auxiliary variables. Most of the attention is devoted to a slightly less general but practically important case. Also in this case the inclusion probabilities are prescribed in advance, making the choice of sampling parameters important. A complication which arises in the context of choosing sampling parameters is that certain probability distributions need to be calculated, and exact calculation turns out to be practically impossible, except for very small cases. It is proposed that Markov Chain Monte Carlo (MCMC) methods are used for obtaining approximations to the relevant probability distributions, and also for sample selection. In general, MCMC methods for sample selection does not occur very frequently in the sampling literature today, making it a fairly novel idea.

Place, publisher, year, edition, pages
Umeå: Institutionen för Matematik och Matematisk Statistik, Umeå universitet, 2009. 26 p.
Keyword
balanced sampling, conditional Poisson sampling, inclusion probabilities, maximum entropy, Markov chain Monte Carlo, Pareto sampling, Sampford sampling, unequal probability sampling.
National Category
Probability Theory and Statistics
Research subject
Mathematical Statistics
Identifiers
urn:nbn:se:umu:diva-22459 (URN)978-91-7264-760-2 (ISBN)
Public defence
2009-06-04, MA121, MIT-huset, Umeå Universitet, 90187 Umeå, Umeå, 13:15 (English)
Opponent
Supervisors
Available from: 2009-05-13 Created: 2009-05-11 Last updated: 2016-03-07Bibliographically approved

Open Access in DiVA

No full text

Search in DiVA

By author/editor
Lundquist, AndersBondesson, Lennart
By organisation
Department of Mathematics and Mathematical Statistics
Probability Theory and Statistics

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 150 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf