umu.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Adsorption of Glyphosate on Goethite: Molecular Characterization of Surface Complexes
Umeå University, Faculty of Science and Technology, Chemistry.
Umeå University, Faculty of Science and Technology, Chemistry.
Umeå University, Faculty of Science and Technology, Chemistry.
2002 (English)In: Environmental Science & Technology, Vol. 36, no 14, 3090-5 p.Article in journal (Refereed) Published
Abstract [en]

As a component of herbicides, the fate of glyphosate (PMG) in the environment is of significant interest. The nature of PMG adsorption on mineral surfaces plays a significant role in the degradation of PMG. The adsorption of PMG on goethite (-FeOOH) has been studied as a function of pH and PMG concentration. Adsorption was investigated with batch experiments, attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), and X-ray photoelectron spectroscopy (XPS). The N 1s line in XPS spectra showed deprotonation of the amine group of PMG (NH2+) with increasing pH. IR analyses showed no evidence for the interaction of PMG's carboxylate group with the goethite surface, while the phosphonate group formed inner-sphere complexes. There is evidence for intramolecular hydrogen bonding between NH2+ and both the carboxylate and the phosphonate groups at low pH. Intramolecular hydrogen bonding is lost when the amine group is deprotonated, and the trend in intramolecular hydrogen bonding between NH2+ and phosphonate shows that PMG adsorbs via predominantly monodentate complexation. A minor quantity of bidentate complexes is thought to form both at near-neutral pH and when the surface concentration of PMG is low. While the phosphonate group of PMG binds directly, the carboxylate group remains relatively "free" from complexation with goethite, leaving it subject to degradation and/or complexation with metal ions present in the environment.

Place, publisher, year, edition, pages
2002. Vol. 36, no 14, 3090-5 p.
Identifiers
URN: urn:nbn:se:umu:diva-9020DOI: doi:10.1021/es010295wOAI: oai:DiVA.org:umu-9020DiVA: diva2:148691
Available from: 2008-02-26 Created: 2008-02-26 Last updated: 2011-01-13Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Sjöberg, StaffanPersson, Per
By organisation
Chemistry

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 46 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf