umu.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
2D wavelet analysis and compression of on-line industrial process data
Umeå University, Faculty of Science and Technology, Department of Chemistry. (Computational Life Science Cluster (CLiC))
2001 (English)In: Journal of Chemometrics: SPECIAL ISSUE: Dedicated to Harald Martens-The Third Recipient of the Herman Wold Medal. Issue Edited by Lennart Eriksson, Torbjörn Lundstedt, Vol. 15, no 4, 299-319 p.Article in journal (Refereed) Published
Abstract [en]

In recent years the wavelet transform (WT) has interested a large number of scientists from many different fields. Pattern recognition, signal processing, signal compression, process monitoring and control, and image analysis are some areas where wavelets have shown promising results. In this paper, 2D wavelet analysis and compression of near-infrared spectra for on-line monitoring of wood chips is reviewed. We introduce a new parameter for outlier detection, distance to model in wavelet space (DModW), which is analogous to the residual parameter (DModX) used in principal component analysis (PCA) and partial least squares analysis (PLS). Additionally, we describe the wavelet power spectrum (WPS), the wavelet analogue of the power spectrum. The WPS gives an overview of the time-frequency content in a signal. In the example given, wavelets improved the detection of spectral shift and compressed data 1000-fold without degrading the quality of the 2D wavelet-compressed PCA model. The example concerned an industrial process-monitoring situation where near-infrared spectra are measured on-line on top of a conveyer belt filled with wood chips at a Swedish pulp plant.

Place, publisher, year, edition, pages
2001. Vol. 15, no 4, 299-319 p.
Keyword [en]
2D wavelet transform, on-line process monitoring, time series compression, wavelet power spectrum, near-infrared spectroscopy, NIR, outlier detection
National Category
Biological Sciences
Identifiers
URN: urn:nbn:se:umu:diva-9114DOI: doi:10.1002/cem.681OAI: oai:DiVA.org:umu-9114DiVA: diva2:148785
Available from: 2008-03-03 Created: 2008-03-03 Last updated: 2012-09-05

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Trygg, Johan
By organisation
Department of Chemistry
Biological Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 27 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf