umu.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Bond shift and charge transfer dynamics in methylene- and dimethylsilyl-bridged dicyclooctatetraene dianions
Umeå University, Faculty of Science and Technology, Chemistry.
Umeå University, Faculty of Science and Technology, Chemistry.
2001 (English)In: Journal of the Chemical Society Perkin Transactions 2, 1130-8 p.Article in journal (Refereed) Published
Abstract [en]

The rate constants for bond shift in dicyclooctatetraenylmethane (1), dicyclooctatetraenyldimethylsilane (2), and their dianions (12– and 22–) in [2H8]THF, have been determined from the temperature dependence of their 13C NMR linewidths. The corresponding parameters for intramolecular electron and cation transfer (charge transfer) between the dinegative and neutral rings have been measured by 13C NMR spin saturation transfer experiments for the dipotassium salts of 1 and 2. Selected structural features of the neutral compounds and the dianions are discussed on the basis of 13C NMR chemical shifts and ab initio molecular orbital calculations at the HF/6-31G* and HF/3-21G(*) levels of theory. Energy contributions to the ring flattening in the bond shift process are calculated by molecular mechanics methods. The measured rate constants for both bond shift and charge transfer are larger for the methylene-bridged dianion. Approximately half of this difference is due to the greater ease of gating (i.e., ring flattening and distortion to the bond shift transition state) in 12––2K+. A significant portion of the remainder is attributed to a greater inter-ring through-space interaction in 12–, although mediation by the cation and/or through-bridge interactions probably also contribute to some extent. A temperature-dependent differential 13C NMR line broadening is observed for the dianion ring carbons of the dipotassium salts. Possible mechanisms for this counterion-specific line broadening, which occurs only for carbons with large HOMO coefficients, are discussed.

Place, publisher, year, edition, pages
2001. 1130-8 p.
Identifiers
URN: urn:nbn:se:umu:diva-9190DOI: doi:10.1039/b101025pOAI: oai:DiVA.org:umu-9190DiVA: diva2:148861
Available from: 2008-03-07 Created: 2008-03-07 Last updated: 2011-01-13Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Eliasson, Bertil
By organisation
Chemistry

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 79 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf