umu.sePublications

CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_upper_j_idt161",{id:"formSmash:upper:j_idt161",widgetVar:"widget_formSmash_upper_j_idt161",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:upper:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_upper_j_idt162_j_idt164",{id:"formSmash:upper:j_idt162:j_idt164",widgetVar:"widget_formSmash_upper_j_idt162_j_idt164",target:"formSmash:upper:j_idt162:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});

To explore and verify in mathematicsPrimeFaces.cw("AccordionPanel","widget_formSmash_some",{id:"formSmash:some",widgetVar:"widget_formSmash_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_all",{id:"formSmash:all",widgetVar:"widget_formSmash_all",multiple:true});
function selectAll()
{
var panelSome = $(PrimeFaces.escapeClientId("formSmash:some"));
var panelAll = $(PrimeFaces.escapeClientId("formSmash:all"));
panelAll.toggle();
toggleList(panelSome.get(0).childNodes, panelAll);
toggleList(panelAll.get(0).childNodes, panelAll);
}
/*Toggling the list of authorPanel nodes according to the toggling of the closeable second panel */
function toggleList(childList, panel)
{
var panelWasOpen = (panel.get(0).style.display == 'none');
// console.log('panel was open ' + panelWasOpen);
for (var c = 0; c < childList.length; c++) {
if (childList[c].classList.contains('authorPanel')) {
clickNode(panelWasOpen, childList[c]);
}
}
}
/*nodes have styleClass ui-corner-top if they are expanded and ui-corner-all if they are collapsed */
function clickNode(collapse, child)
{
if (collapse && child.classList.contains('ui-corner-top')) {
// console.log('collapse');
child.click();
}
if (!collapse && child.classList.contains('ui-corner-all')) {
// console.log('expand');
child.click();
}
}
2001 (English)Doctoral thesis, monograph (Other academic)
##### Abstract [en]

##### Place, publisher, year, edition, pages

Umeå: Institutionen för matematik och matematisk statistik, Umeå universitet , 2001. , p. 159
##### Series

Doctoral thesis / Umeå University, Department of Mathematics, ISSN 1102-8300 ; 21
##### Keywords [en]

Explorations, mathematical reasoning, empirical investigations, graphing calculators, conjectures.
##### National Category

Didactics Mathematics
##### Research subject

didactics of mathematics
##### Identifiers

URN: urn:nbn:se:umu:diva-9345ISBN: 91-7305-116-0 (print)OAI: oai:DiVA.org:umu-9345DiVA, id: diva2:149016
##### Public defence

2001-11-01, MIT-huset, Ma 121, Umeå universitet, Umeå, 10:15 (Swedish)
##### Opponent

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt518",{id:"formSmash:j_idt518",widgetVar:"widget_formSmash_j_idt518",multiple:true});
##### Supervisors

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt524",{id:"formSmash:j_idt524",widgetVar:"widget_formSmash_j_idt524",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt530",{id:"formSmash:j_idt530",widgetVar:"widget_formSmash_j_idt530",multiple:true}); Available from: 2008-03-25 Created: 2008-03-25 Last updated: 2018-06-09Bibliographically approved

This dissertation consists of four articles and a summary. The main focus of the studies is students' explorations in upper secondary school mathematics.

In the first study the central research question was to find out if the students could learn something difficult by using the graphing calculator. The students were working with questions connected to factorisation of quadratic polynomials, and the factor theorem. The results indicate that the students got a better understanding for the factor theorem, and for the connection between graphical and algebraical representations.

The second study focused on a the last part of an investigation, the verification of an idea or a conjecture. Students were given three conjectures and asked to decide if they were true or false, and also to explain why the conjectures were true or false. In this study I found that the students wanted to use rather abstract mathematics in order to verify the conjectures.

Since the results from the second study disagreed with other research in similar situations, I wanted to see what Swedish teachers had to say of the students' ways to verify the conjectures.

The third study is an interview study where some teachers were asked what expectations they had on students who were supposed to verify the three conjectures from the second study. The teachers were also confronted with examples from my second study, and asked to comment on how the students performed. The results indicate that teachers tend to underestimate students' mathematical reasoning.

A central focus to all my three studies is explorations in mathematics. My fourth study, a revised version of a pilot study performed 1998, concerns exactly that: how students in upper secondary school explore a mathematical concept. The results indicate that the students are able to perform explorations in mathematics, and that the graphing calculator has a potential as a pedagogical aid, it can be a support for the students' mathematical reasoning.

isbn
urn-nbn$(function(){PrimeFaces.cw("Tooltip","widget_formSmash_j_idt1490",{id:"formSmash:j_idt1490",widgetVar:"widget_formSmash_j_idt1490",showEffect:"fade",hideEffect:"fade",showDelay:500,hideDelay:300,target:"formSmash:altmetricDiv"});});

CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_lower_j_idt1544",{id:"formSmash:lower:j_idt1544",widgetVar:"widget_formSmash_lower_j_idt1544",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:lower:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_lower_j_idt1545_j_idt1547",{id:"formSmash:lower:j_idt1545:j_idt1547",widgetVar:"widget_formSmash_lower_j_idt1545_j_idt1547",target:"formSmash:lower:j_idt1545:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});