Change search
ReferencesLink to record
Permanent link

Direct link
A multivariate approach applied to microarray data for identification of genes with cell cycle-coupled transcription
Umeå University, Faculty of Science and Technology, Chemistry.
Umeå University, Faculty of Science and Technology, Chemistry.
Umeå University, Faculty of Science and Technology, Chemistry.
2003 (English)In: Bioinformatics, Vol. 19, no 4, 467-73 p.Article in journal (Refereed) Published
Abstract [en]

We have analyzed microarray data using a modeling approach based on the multivariate statistical method partial least squares (PLS) regression to identify genes with periodic fluctuations in expression levels coupled to the cell cycle in the budding yeast, Saccharomyces cerevisiae. PLS has major advantages for analyzing microarray data since it can model data sets with large numbers of variables and with few observations.

A response model was derived describing the expression profile over time expected for periodically transcribed genes, and was used to identify budding yeast transcripts with similar profiles. PLS was then used to interpret the importance of the variables (genes) for the model, yielding a ranking list of how well the genes fitted the generated model. Application of an appropriate cutoff value, calculated from randomized data, allows the identification of genes whose expression appears to be synchronized with cell cycling. Our approach also provides information about the stage in the cell cycle where their transcription peaks.

Three synchronized yeast cell microarray data sets were analyzed, both separately and combined. Cell cycle-coupled periodicity was suggested for 455 of the 6,178 transcripts monitored in the combined data set, at a significance level of 0.5%. Among the candidates, 85% of the known periodic transcripts were included. Analysis of the three data sets separately yielded similar ranking lists, showing that the method is robust.

Place, publisher, year, edition, pages
2003. Vol. 19, no 4, 467-73 p.
URN: urn:nbn:se:umu:diva-10087DOI: doi:10.1093/bioinformatics/btg017OAI: diva2:149758
Available from: 2008-06-16 Created: 2008-06-16 Last updated: 2011-01-13Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text
By organisation

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 12 hits
ReferencesLink to record
Permanent link

Direct link