umu.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Weighted norm inequalities for Riesz potentials and fractional maximal functions in mixed norm Lebesgue spaces
Umeå University, Faculty of Science and Technology, Mathematics and Mathematical Statistics.
1990 (English)In: Studia Mathematica, ISSN 0039-3233, Vol. 97, no 3, 239-244 p.Article in journal (Refereed) Published
Abstract [en]

Norm inequalities for Riesz potentials and fractional maximal functions in weighted Lebesgue spaces were proved by Muckenhoupt and Wheeden in the 1970's. We prove such inequalities in weighted mixed norm Lebesgue spaces for the full range oh indices. Our proofs make extensive use of the concept of independence of weights in the Muckenhoupt classes.

Place, publisher, year, edition, pages
Warszawa: Polish Academy of Sciences , 1990. Vol. 97, no 3, 239-244 p.
Keyword [en]
Riesz potential, sharp function, weight, mixed norm space
National Category
Mathematical Analysis
Identifiers
URN: urn:nbn:se:umu:diva-10141OAI: oai:DiVA.org:umu-10141DiVA: diva2:149812
Available from: 2008-10-09 Created: 2008-10-09 Last updated: 2010-01-15Bibliographically approved

Open Access in DiVA

No full text

Authority records BETA

Sjödin, Tord

Search in DiVA

By author/editor
Sjödin, Tord
By organisation
Mathematics and Mathematical Statistics
Mathematical Analysis

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 78 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf