umu.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Reaction centre quenching of excess light energy and photoprotection of photosystem II
Umeå University, Faculty of Science and Technology, Department of Plant Physiology. Umeå University, Faculty of Science and Technology, Umeå Plant Science Centre (UPSC).ORCID iD: 0000-0001-5151-5184
Umeå University, Faculty of Science and Technology, Department of Plant Physiology. Umeå University, Faculty of Science and Technology, Umeå Plant Science Centre (UPSC).
Show others and affiliations
2008 (English)In: Journal of Plant Biology, Vol. 51, no 2, 85-96 p.Article in journal (Refereed) Published
Abstract [en]

In addition to the energy dissipation of excess light occurring in PSII antenna via the xanthophyll cycle, there is mounting evidence of a zeaxanthin-independent pathway for non-photochemical quenching based within the PSII reaction centre (reaction centre quenching) that may also play a significant role in photoprotection. It has been demonstrated that acclimation of higher plants, green algae and cyanobacteria to low temperature or high light conditions which potentially induce an imbalance between energy supply and energy utilization is accompanied by the development of higher reduction state of QA and higher resistance to photoinhibition (Huner et al., 1998). Although this is a fundamental feature of all photoautotrophs, and the acquisition of increased tolerance to photoinhibition has been ascribed to growth and development under high PSII excitation pressure, the precise mechanism controlling the redox state of QA and its physiological significance in developing higher resistance to photoinhibition has not been fully elucidated. In this review we summarize recent data indicating that the increased resistance to high light in a broad spectrum of photosynthetic organisms acclimated to high excitation pressure conditions is associated with an increase probability for alternative non-radiative P680+QA − radical pair recombination pathway for energy dissipation within the reaction centre of PSII. The various molecular mechanisms that could account for nonphotochemical quenching through PSII reaction centre are also discussed.

Place, publisher, year, edition, pages
2008. Vol. 51, no 2, 85-96 p.
Identifiers
URN: urn:nbn:se:umu:diva-10447OAI: oai:DiVA.org:umu-10447DiVA: diva2:150118
Available from: 2008-09-11 Created: 2008-09-11 Last updated: 2015-04-29Bibliographically approved

Open Access in DiVA

No full text

Search in DiVA

By author/editor
Hurry, VaughanOquist, Gunnar
By organisation
Department of Plant PhysiologyUmeå Plant Science Centre (UPSC)

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 78 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf