Change search
ReferencesLink to record
Permanent link

Direct link
Bridging the gap between ancient metal pollution and contemporary biogeochemistry
Umeå University, Faculty of Science and Technology, Ecology and Environmental Science.
Umeå University, Faculty of Science and Technology, Ecology and Environmental Science.
Umeå University, Faculty of Science and Technology, Ecology and Environmental Science.
2008 (English)In: Journal of Paleolimnology, Vol. 40, no 3, 755-770 p.Article in journal (Refereed) Published
Abstract [en]

Paleolimnology provides long-term data that are often essential for understanding the current state of the environment. Even though there is great potential, paleolimnology is rarely used together with process-related studies to solve issues regarding cycling of elements in the environment. Clearly, this is a drawback because the cycling of many elements, which cause great concern in the present-day environment, was altered long before the advent of monitoring programs. The pioneering work of C.C. Patterson and his colleagues emphasized the importance of a long-term perspective for understanding the current cycling of metals, with a focus on lead, and in particular for estimating background concentrations and human-related impacts in the environment. In Sweden the first traces of atmospheric lead pollution are found in lake sediments dated to about 3500 years ago. The long-term changes in the pollution lead record in lake sediments led us to consider how lead biogeochemistry has changed over time in response to this historical deposition‹where has this lead gone, and how much does this lead contribute to the present-day biogeochemical cycling of lead? How was lead distributed in Œpre-industrial¹ soils or more properly in natural soils not impacted by atmospheric pollution? There are many studies that have examined the effects of increased metal concentrations on soil biota, but what are the appropriate background conditions for comparison? Using lake sediments as our foundation we have analyzed lead, including its stable isotopes, in other environmental compartments, including peat, soil, and a range of boreal forest plant species, to develop a better understanding of the fate of lead derived from long-term pollution. Three important conclusions from our studies in Sweden are: (1) atmospheric lead deposition rates during the 20th century were 100 to as much as 1000 times higher than natural deposition rates a few thousand years ago. Even with stricter emission standards during the past three decades and the resultant reductions in deposition, lead deposition rates today are still 10­100 times greater than natural rates. This increase in deposition rates modeled from sediment and peat records is of a similar scale to estimated changes in body burdens of lead in modern versus ancient humans. (2) In Europe about half of the cumulative burden of atmospherically deposited lead was deposited before industrialization. In southern Sweden the cumulative burden of pollution lead during the past 3500 years is 2­5 g Pb m-2 and in the Œpristine¹ northern parts of the country there is about 1 g Pb m-2. (3) Predicted recovery rates for soils are slow; in the cold climate of Scandinavia, we find that the soil surface (O horizon), where most soil biota reside, retains lead deposited over the past 150­500 years. Therefore, although lead deposition rates in Europe, as well as N. America, are only 10% of those a few decades ago, it will take several decades or longer for lead concentrations in soils to respond appreciably. The slow turnover rates for lead in the environment and gradual immobilization of lead in deeper soil mineral horizons also inhibits a loss of lead to surface waters in areas removed from point sources.

Place, publisher, year, edition, pages
2008. Vol. 40, no 3, 755-770 p.
URN: urn:nbn:se:umu:diva-11376DOI: doi:10.1007/s10933-008-9208-4OAI: diva2:151047
Available from: 2008-12-16 Created: 2008-12-16 Last updated: 2011-01-10Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Bindler, RichardRenberg, IngemarKlaminder, Jonatan
By organisation
Ecology and Environmental Science

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 87 hits
ReferencesLink to record
Permanent link

Direct link