umu.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Precipitation of secondary Fe(III) minerals from acid mine drainage
Umeå University, Faculty of Science and Technology, Chemistry.
2006 (English)In: Applied Geochemistry, Vol. 21, 437-45 p.Article in journal (Refereed) Published
Abstract [en]

Oxidation of FeS2 in mine waste releases Click to view the MathML source, Fe(II) and H+, resulting in acid mine drainage (AMD). Subsequent oxidation and precipitation of Fe produces different Fe(III) phases where the mineralogical composition depends on pH and the ambient concentrations of metal ions and complexing ligands. The oxidation and precipitation of Fe in AMD has been studied under various conditions with the intent of understanding the role these processes play in the natural attenuation of metal contaminants in the AMD. The combined process of Fe oxidation and precipitation in AMD from the Kristineberg mine, northern Sweden, has been investigated with pH-stat experiments at pH 5.5 and 7 at 10 and 25 °C. The precipitates formed have been characterised in terms of mineralogy and surface area. Similar phases formed at both temperatures, while the oxidation and precipitation occurred more readily at the higher temperature and higher pH. At pH 7, mainly lepidocrocite (γ-FeOOH) was precipitated while at a lower pH of 5.5, a mixture of schwertmannite, goethite, ferrihydrite and lepidocrocite formed. The ambient Zn(II) concentration was immediately reduced to acceptable levels (according to Swedish EPA) at pH 7 whereas a 2–3 weeks ageing period was necessary to achieve the same effect at pH 5.5. The presence of natural organic matter (NOM) reduced the attenuating effect at pH 5.5 after ageing but increased it slightly at pH 7. Addition of Zn(II) at pH 8 resulted in a mixed Fe(III)–Zn(II) precipitate of unknown composition with some Zn(II) adsorbed at the surface. The Fe(III) precipitates formed are potentially useful for the natural attenuation of metal contaminants in AMD although based on these investigations, the degree of success depends upon pH and NOM concentration.

Place, publisher, year, edition, pages
2006. Vol. 21, 437-45 p.
Identifiers
URN: urn:nbn:se:umu:diva-12415DOI: doi:10.1016/j.apgeochem.2005.12.008OAI: oai:DiVA.org:umu-12415DiVA: diva2:152086
Available from: 2008-06-04 Created: 2008-06-04 Last updated: 2011-01-11Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Authority records BETA

Lövgren, Lars

Search in DiVA

By author/editor
Lövgren, Lars
By organisation
Chemistry

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 54 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf