Change search
ReferencesLink to record
Permanent link

Direct link
Statistical multivariate metabolite profiling for aiding biomarker pattern detection and mechanistic interpretations in GC/MS based metabolomics
Umeå University, Faculty of Science and Technology, Department of Chemistry.
Umeå University, Faculty of Science and Technology, Department of Chemistry.
Show others and affiliations
2006 (English)In: Metabolomics, Vol. 2, no 4, 257-68 p.Article in journal (Refereed) Published
Abstract [en]

A strategy for robust and reliable mechanistic statistical modelling of metabolic responses in relation to drug induced toxicity is presented. The suggested approach addresses two cases commonly occurring within metabonomic toxicology studies, namely; 1) A pre-defined hypothesis about the biological mechanism exists and 2) No such hypothesis exists. GC/MS data from a liver toxicity study consisting of rat urine from control rats and rats exposed to a proprietary AstraZeneca compound were resolved by means of hierarchical multivariate curve resolution (H-MCR) generating 287 resolved chromatographic profiles with corresponding mass spectra. Filtering according to significance in relation to drug exposure rendered in 210 compound profiles, which were subjected to further statistical analysis following correction to account for the control variation over time. These dose related metabolite traces were then used as new observations in the subsequent analyses. For case 1, a multivariate approach, named Target Batch Analysis, based on OPLS regression was applied to correlate all metabolite traces to one or more key metabolites involved in the pre-defined hypothesis. For case 2, principal component analysis (PCA) was combined with hierarchical cluster analysis (HCA) to create a robust and interpretable framework for unbiased mechanistic screening. Both the Target Batch Analysis and the unbiased approach were cross-verified using the other method to ensure that the results did match in terms of detected metabolite traces. This was also the case, implying that this is a working concept for clustering of metabolites in relation to their toxicity induced dynamic profiles regardless if there is a pre-existing hypothesis or not. For each of the methods the detected metabolites were subjected to identification by means of data base comparison as well as verification in the raw data. The proposed strategy should be seen as a general approach for facilitating mechanistic modelling and interpretations in metabolomic studies.

Place, publisher, year, edition, pages
2006. Vol. 2, no 4, 257-68 p.
Keyword [en]
Metabolomics, Metabonomics, Metabolite profiling, GC/MS, Curve resolution, Hierarchical multivariate curve resolution, Chemometrics, Multivariate data analysis, Cluster analysis, Correlation networks, Biomarkers
URN: urn:nbn:se:umu:diva-12512DOI: 10.1007/s11306-006-0032-4OAI: diva2:152183
Available from: 2007-09-28 Created: 2007-09-28 Last updated: 2013-03-19Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Chorell, ElinThysell, ElinJonsson, PärAntti, Henrik
By organisation
Department of Chemistry

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 78 hits
ReferencesLink to record
Permanent link

Direct link