Change search
ReferencesLink to record
Permanent link

Direct link
Disulfide-bond formation in the transthyretin mutant Y114C prevents amyloid fibril formation in vivo and in vitro.
Umeå University, Faculty of Science and Technology, Umeå Centre for Molecular Pathogenesis (UCMP) (Faculty of Science and Technology).
Faculty of Medicine, Umeå Centre for Molecular Pathogenesis (UCMP) (Faculty of Medicine).
Show others and affiliations
2002 (English)In: Biochemistry, ISSN 0006-2960, Vol. 41, no 44, 13143-51 p.Article in journal (Refereed) Published
Abstract [en]

The Y114C mutation in human transthyretin (TTR) is associated with a particular form of familial amyloidotic polyneuropathy. We show that vitreous aggregates ex vivo consist of either regular amyloid fibrils or disordered disulfide-linked precipitates that maintain the ability to bind Congo red. Furthermore, we demonstrate in vitro that the ATTR Y114C mutant exists in three forms: one unstable but nativelike tetrameric form, one highly aggregated form in which a network of disulfide bonds is formed, and one fibrillar form. The disulfide-linked aggregates and the fibrillar form of the mutant can be induced by heat induction under nonreduced and reduced conditions, respectively. Both forms are recognized by the amyloid specific antibody MAB(39-44). In a previous study, we have linked exposure of this epitope in TTR to a three-residue shift in beta-strand D. The X-ray crystallographic structure of reduced tetrameric ATTR Y114C shows a structure similar to that of the wild type but with a more buried position of Cys10 and with beta-mercaptoethanol associated with Cys114, verifying the strong tendency for this residue to form disulfide bonds. Combined with the ex vivo data, our in vitro findings suggest that ATTR Y114C can lead to disease either by forming regular unbranched amyloid fibrils or by forming disulfide-linked aggregates that maintain amyloid-like properties but are unable to form regular amyloid fibrils.

Place, publisher, year, edition, pages
2002. Vol. 41, no 44, 13143-51 p.
Keyword [en]
Adult, Amino Acid Substitution/genetics, Amyloid/*antagonists & inhibitors/*chemistry/ultrastructure, Amyloid Neuropathies; Familial/genetics/metabolism/pathology, Antibodies; Monoclonal/metabolism, Crystallography; X-Ray, Cysteine/genetics, Disulfides/*chemistry, Electrophoresis; Polyacrylamide Gel, Epitopes/immunology, Female, Humans, Middle Aged, Mutagenesis; Site-Directed, Oxidation-Reduction, Prealbumin/*chemistry/*genetics/ultrastructure, Protein Conformation, Recombinant Proteins/biosynthesis/chemistry/isolation & purification/ultrastructure, Tyrosine/genetics
URN: urn:nbn:se:umu:diva-13956PubMedID: 12403615OAI: diva2:153627
Available from: 2007-10-12 Created: 2007-10-12 Last updated: 2011-01-13Bibliographically approved

Open Access in DiVA

No full text

Other links


Search in DiVA

By author/editor
Olofsson, AndersLundgren, ErikSauer-Eriksson, Elisabeth
By organisation
Umeå Centre for Molecular Pathogenesis (UCMP) (Faculty of Science and Technology)Umeå Centre for Molecular Pathogenesis (UCMP) (Faculty of Medicine)Molecular Biology (Faculty of Medicine)

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 50 hits
ReferencesLink to record
Permanent link

Direct link