Umeå University's logo

umu.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
A comparative analysis of 23 structures of the amyloidogenic protein transthyretin.
Umeå University, Faculty of Science and Technology, Umeå Centre for Molecular Pathogenesis (UCMP) (Faculty of Science and Technology).
Umeå University, Faculty of Science and Technology, Umeå Centre for Molecular Pathogenesis (UCMP) (Faculty of Science and Technology).
Faculty of Medicine, Molecular Biology (Faculty of Medicine). (Lundgren)
Faculty of Medicine, Molecular Biology (Faculty of Medicine). (Lundgren)
Show others and affiliations
2000 (English)In: J Mol Biol, ISSN 0022-2836, Vol. 302, no 3, p. 649-69Article in journal (Refereed) Published
Abstract [en]

Self-assembly of the human plasma protein transthyretin (TTR) into unbranched insoluble amyloid fibrils occurs as a result of point mutations that destabilize the molecule, leading to conformational changes. The tertiary structure of native soluble TTR and many of its disease-causing mutants have been determined. Several independent studies by X-ray crystallography have suggested structural differences between TTR variants which are claimed to be of significance for amyloid formation. As these changes are minor and not consistent between the studies, we have compared all TTR structures available at the protein data bank including three wild-types, three non-amyloidogenic mutants, seven amyloidogenic mutants and nine complexes. The reference for this study is a new 1.5 A resolution structure of human wild-type TTR refined to an R-factor/R-free of 18.6 %/21.6 %. The present findings are discussed in the light of the previous structural studies of TTR variants, and show the reported structural differences to be non-significant.

Place, publisher, year, edition, pages
2000. Vol. 302, no 3, p. 649-69
Keywords [en]
Crystallography; X-Ray, Dimerization, Electrostatics, Humans, Hydrogen Bonding, Hydrogen-Ion Concentration, Models; Molecular, Molecular Sequence Data, Mutation, Prealbumin/*chemistry/genetics/metabolism, Protein Structure; Secondary, Protein Structure; Tertiary, Senile Plaques/*chemistry/genetics, Solubility, Solvents, Variation (Genetics), Water/metabolism
Identifiers
URN: urn:nbn:se:umu:diva-13963PubMedID: 10986125Scopus ID: 2-s2.0-0034703380OAI: oai:DiVA.org:umu-13963DiVA, id: diva2:153634
Available from: 2007-10-12 Created: 2007-10-12 Last updated: 2023-03-24Bibliographically approved
In thesis
1. Transthyretin from a structural perspective
Open this publication in new window or tab >>Transthyretin from a structural perspective
2004 (English)Doctoral thesis, comprehensive summary (Other academic)
Alternative title[sv]
Transthyretin ur ett strukturellt perspektiv
Abstract [en]

Conformational changes in human proteins can induce several types of diseases. The nature of the conformational changes is largely unknown, but some lead to amyloid fibril formation. Amyloid fibrils accumulate in the extra-cellular space of tissues resulting in disruption of organ function. Transthyretin (TTR) is a plasma protein involved in three amyloid diseases, familial amyloidotic polyneuropathy, familial amyloidotic cardiomyopathy, and senile systemic amyloidosis. The latter disease involves conformational changes in the wild-type structure of the protein, whereas the others are caused by a gene mutation.

Our goal is to increase the knowledge of why and how some proteins aggregate into amyloid fibrils by solving and analyzing structures of different TTR variants of which some can form amyloid fibrils, whereas others cannot. The crystal structures of wild-type TTR and many of its disease-causing mutants have previously been determined, and observed structural discrepancies between mutant and wild type were claimed to be of importance for amyloid formation. We performed a comparative analysis of all, at that point, known structures of TTR. As a reference for our study, we determined a 1.5 Å resolution structure of human wild-type TTR. We found that the previously reported structural differences between wild type and mutant TTR were insignificant and did not provide clues to the mechanism for amyloid formation.

We showed the double mutant TTR-Ala108Tyr/Leu110Glu to be less amyloidogenic than wild-type transthyretin. Since the structure of few non-amyloidogenic mutants are known, we solved its structure in two space groups, C2 and P21212, where the latter was consistent with most of the structures of transthyretin. Only the highly amyloidogenic mutant ATTR-Leu55Pro has previously been solved in C2. The packing of molecules in our C2 crystal was close-to-identical to the ATTR-Leu55Pro crystal structure, ruling out the described ATTR-Leu55Pro packing interactions as significant for amyloidosis. The C2 structure displayed a large shift in residues Leu55-Leu58, a structural change previously found only in amyloidogenic TTR variants. Combined with previous data, this suggests that transthyretin in solution contains a mixture of molecules with different conformations. This metastability of transthyretin provides insight to why some proteins aggregate into amyloid fibrils.

The natural ligand thyroxine has been shown to stabilize TTR. Small molecules, based on thyroxine, with the potential to serve as inhibitors for amyloid fibril formation are under development. Iodine is a component of thyroxine and we found that TTR also bound free iodide ions. Taking advantage of the anomalous scattering of iodide, we solved the iodide-bound TTR structure using the single-wavelength anomalous dispersion method. In addition, we determined the TTR-chloride structure. Both chloride and iodide stabilized transthyretin where iodide stabilized better. From the thyroxine-TTR structure, three halogen-binding pockets have been identified in each TTR monomer. We found three bound iodides per TTR monomer, two of which were in the thyroxine-binding channel. This indicates that only two of the three halogen-binding pockets in the thyroid-hormone binding channel are optimal for halogen binding. Our results might be useful for the continuing design of small molecule ligands, which in the end can lead to inhibitors for amyloid diseases.

Place, publisher, year, edition, pages
Umeå: Umeå centrum för molekylär patogenes (UCMP) (Teknisk-naturvetenskaplig fakultet), 2004. p. 50
Keywords
Cell and molecular biology, X-ray crystallography, amyloidosis, structural comparison, anomalous diffraction, Cell- och molekylärbiologi
National Category
Biochemistry and Molecular Biology
Research subject
Molecular Biology
Identifiers
urn:nbn:se:umu:diva-190 (URN)91-7305-593-X (ISBN)
Public defence
2004-02-27, Major Groove, 6L Sjukhusområdet, Umeå Universitet 901 87, Umeå, 10:00
Opponent
Supervisors
Available from: 2004-02-05 Created: 2004-02-05 Last updated: 2017-01-24Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

PubMedScopushttp://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed&cmd=Retrieve&list_uids=10986125&dopt=Citation

Authority records

Olofsson, AndersLundgren, ErikSauer-Eriksson, Elisabeth

Search in DiVA

By author/editor
Olofsson, AndersLundgren, ErikSauer-Eriksson, Elisabeth
By organisation
Umeå Centre for Molecular Pathogenesis (UCMP) (Faculty of Science and Technology)Molecular Biology (Faculty of Medicine)

Search outside of DiVA

GoogleGoogle Scholar

pubmed
urn-nbn

Altmetric score

pubmed
urn-nbn
Total: 488 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf