Change search
ReferencesLink to record
Permanent link

Direct link
Clinal variation in phyB2, a candidate gene for day-length-induced growth cessation and bud set, across a latitudinal gradient in European aspen (Populus tremula).
Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences. Umeå University, Faculty of Science and Technology, Umeå Plant Science Centre (UPSC).
Umeå University, Faculty of Science and Technology, Department of Plant Physiology. Umeå University, Faculty of Science and Technology, Umeå Plant Science Centre (UPSC).
Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences.
Umeå University, Faculty of Science and Technology, Umeå Plant Science Centre (UPSC).
Show others and affiliations
2006 (English)In: Genetics, ISSN 0016-6731, E-ISSN 1943-2631, Vol. 172, no 3, 1845-53 p.Article in journal (Refereed) Published
Abstract [en]

The initiation of growth cessation and dormancy represents a critical ecological and evolutionary trade-off between survival and growth in most forest trees. The most important environmental cue regulating the initiation of dormancy is a shortening of the photoperiod and phytochrome genes have been implicated in short-day-induced bud set and growth cessation in Populus. We characterized patterns of DNA sequence variation at the putative candidate gene phyB2 in 4 populations of European aspen (Populus tremula) and scored single-nucleotide polymorphisms in an additional 12 populations collected along a latitudinal gradient in Sweden. We also measured bud set from a subset of these trees in a growth chamber experiment. Buds set showed significant clinal variation with latitude, explaining ~90% of the population variation in bud set. A sliding-window scan of phyB2 identified six putative regions with enhanced population differentiation and four SNPs showed significant clinal variation. The clinal variation at individual SNPs is suggestive of an adaptive response in phyB2 to local photoperiodic conditions. Three of four SNPs showing clinal variation were located in regions with excessive genetic differentiation, demonstrating that searching for regions of high genetic differentiation can be useful for identifying sites putatively involved in local adaptation.

Place, publisher, year, edition, pages
Pittsburgh, Pennsylvania, USA: the Genetics Society of America , 2006. Vol. 172, no 3, 1845-53 p.
URN: urn:nbn:se:umu:diva-14211DOI: 10.1534/genetics.105.047522PubMedID: 16361240OAI: diva2:153882
Available from: 2007-05-24 Created: 2007-05-24 Last updated: 2015-04-29Bibliographically approved
In thesis
1. Tracing selection and adaptation along an environmental gradient in Populus tremula
Open this publication in new window or tab >>Tracing selection and adaptation along an environmental gradient in Populus tremula
2009 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

The distribution of the expressed genotype is moved around in the population over time byevolution. Natural selection is one of the forces that act on the phenotype to change the patterns ofnucleotide variation underlying those distributions. How the phenotype changes over aheterogeneous environment describes the type of evolutionary force acting on this trait and thisshould be reflected in the variation at loci underlying this trait. While the variation in phenotypesand at the nucleotide level in a population indicates the same evolutionary force, it does notnecessarily mean that they are connected. In natural populations the continuous shifting of geneticmaterial through recombination events break down possible associations between loci facilitates theexamination of possible causal loci to single base pair differences in DNA-sequences. Connecting thegenotype and the phenotype thus provides an important step in the understanding the geneticarchitecture of complex traits and the forces that shape the observed patterns.This thesis examines the European aspen, Populus tremula, sampled from subpopulations overan extensive latitudinal gradient covering most of Sweden. Results show a clear geneticdifferentiation in the timing of bud set, a measure of the autumnal cessation of growth, betweendifferent parts of Sweden pointing at local adaptation. In the search for candidate genes thatunderlie the local adaptation found, most genes (25) in the photoperiodic gene network wereexamined for signals of selection. Genes in the photoperiodic network show an increase in theheterogeneity of differentiation between sampled subpopulations in Sweden. Almost half (12) of theexamined genes are under some form of selection. Eight of these genes show positive directionalselection on protein evolution and the gene that code for a photoreceptor, responsible for mediatingchanging light conditions to downstream targets in the network, has the hallmarks of a selectivesweep. The negative correlation between positive directional selection and synonymous diversityindicates that the majority of the photoperiod gene network has undergone recurrent selectivesweeps. A phenomenon that likely has occurred when P. tremula has readapted to the northern lightregimes during population expansion following retracting ice between periods of glaciations. Two ofthe genes under selection also have single nucleotide polymorphisms (SNP) that associate with budset, two in the PHYB2 gene and one in the LHY2 gene. Furthermore, there is an additional SNP inLHY1 that explain part of the variation in timing of bud set, despite the lack of a signal of selection atthe LHY1 gene. Together these SNPs explain 10-15% of the variation in the timing of bud set and 20-30% more if accounting for the positive co-variances between SNPs. There is thus rather extensiveevidence that genes in the photoperiod gene network control the timing of bud set, and reflect localadaptation in this trait.

Place, publisher, year, edition, pages
Umeå: Institutionen för Ekologi, miljö och geovetenskap, Umeå universitet, 2009. 42 p.
Local adaptation, Selection, genetic differentiation, QST, FST, Association study, frequency spectra, recurrent hitchhiking, selective sweep, Tree, Populus, natural selection, quantitative genetics
National Category
Research subject
Population Biology; Genetics
urn:nbn:se:umu:diva-30123 (URN)978-91-7264-907-1 (ISBN)
Public defence
2010-01-16, Stora Hörsalen KBC, KB3B1, Umeå Universitet, KBC, Linnaeus väg 6, Umeå, 10:00 (English)
Available from: 2009-12-17 Created: 2009-12-07 Last updated: 2010-02-01Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textPubMed

Search in DiVA

By author/editor
Ingvarsson, PärGarci­a, MaribelHall, DavidJansson, Stefan
By organisation
Department of Ecology and Environmental SciencesUmeå Plant Science Centre (UPSC)Department of Plant Physiology
In the same journal

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 67 hits
ReferencesLink to record
Permanent link

Direct link