umu.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Effect of kaolin and limestone addition on slag formation during combustion of wood fuels
Umeå University, Faculty of Science and Technology, Department of Applied Physics and Electronics, Energy Technology and Thermal Process Chemistry.
Umeå University, Faculty of Science and Technology, Department of Applied Physics and Electronics, Energy Technology and Thermal Process Chemistry.
Umeå University, Faculty of Science and Technology, Department of Applied Physics and Electronics, Energy Technology and Thermal Process Chemistry.
Energy Technology Centre, Piteå, Sweden.
2004 (English)In: Energy & Fuels, ISSN 0887-0624, E-ISSN 1520-5029, Vol. 18, no 5, 1370-1376 p.Article in journal (Refereed) Published
Abstract [en]

Ash-related problems have more than occasionally been observed in wood-fuel-fired boilers and also recently in wood-pellet burners. These problems can lead to reduced accessibility of the combustion systems as well as bad publicity for the market. The objectives of the present work were, therefore, to determine the effects of kaolin and limestone addition on the slagging propensities of problematic and problem-free wood fuels during combustion in residential pellet appliances (burners), thus contributing to the understanding of the role of kaolin and limestone in preventing slagging on furnace grates. Pellets with additive-to-fuel ratios between 0 and 0.7 wt %d.s. were combusted in three different types of burner constructions (10 kW): over-, horizontal-, and under-feeding of the fuel. The collected slag deposits from the under-fed burner as well as the corresponding deposited fly ash in the boiler were characterized with X-ray diffraction (XRD) and inductively coupled plasma atomic emission spectroscopy (ICP-AES). The initial sintering temperatures of the formed slags were also determined. By adding limestone with an additive-to-fuel ratio of 0.5 wt %d.s. to the problematic stemwood raw material (Si-enriched probably because of contamination of sand/soil), the severe slagging of the fuel could totally be eliminated. Adding kaolin to the problematic raw material gave a minor decrease in slagging tendency of the problematic raw material and a major increase in slagging tendency of the problem-free stemwood raw material. When adding limestone to the problematic raw material, the composition of the formed slag was changed from relatively low temperature melting silicates to high temperature melting silicates and oxides. On the other hand, kaolin addition to the problematic raw material changed the content of the slag from mainly Ca-Mg silicates to be dominated by K-Al silicates which have relatively low melting points. When introducing kaolin to the problem-free raw material, the high temperature melting Ca-Mg oxides react to form lower temperature melting Ca-Al-K silicates. Chemical equilibrium model calculations were used to interpret the experimental findings, and generally good qualitative agreements between modeling and experimental results were obtained.

Place, publisher, year, edition, pages
Washington, D.C.: American Chemical Society , 2004. Vol. 18, no 5, 1370-1376 p.
Identifiers
URN: urn:nbn:se:umu:diva-14846DOI: doi:10.1021/ef040025+ISI: 000223976800018OAI: oai:DiVA.org:umu-14846DiVA: diva2:154518
Available from: 2008-03-19 Created: 2008-03-19 Last updated: 2017-12-14Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Boström, DanNordin, Anders
By organisation
Energy Technology and Thermal Process Chemistry
In the same journal
Energy & Fuels

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 112 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf