umu.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Insulin resistance, endocrine function and adipokines in type 2 diabetes patients at different glycaemic levels: potential impact for glucotoxicity in vivo
Umeå University, Faculty of Medicine, Department of Public Health and Clinical Medicine, Medicine.
Umeå University, Faculty of Medicine, Department of Public Health and Clinical Medicine, Medicine.
Umeå University, Faculty of Medicine, Department of Public Health and Clinical Medicine, Medicine.
2006 (English)In: Clinical Endocrinology, ISSN 0300-0664, E-ISSN 1365-2265, Vol. 65, no 3, 301-309 p.Article in journal (Refereed) Published
Abstract [en]

Objective To evaluate the interplay between hyperglycaemia, insulin resistance, hormones and adipokines in patients with type 2 diabetes mellitus (T2DM). Design and methods Ten patients with T2DM with good glycaemic control (G), 10 with poor control (P) and 10 nondiabetic control subjects (C) were matched for sex (M/F 6/4), age and body mass index. A hyperinsulinaemic, euglycaemic clamp was performed and cytokines and endocrine functions, including cortisol axis activity were assessed. Results Patients with diabetes were more insulin resistant than group C, and group P exhibited the highest degree of insulin resistance ( P = 0·01, P vs C). Tumour necrosis factor (TNF)-alpha levels were elevated in patients with diabetes ( P = 0·05) and group P had the highest levels of fasting serum cortisol ( P = 0·05), nonesterified fatty acids (NEFA; P = 0·06) and C-reactive protein (CRP; P = 0·01). Adiponectin levels were lower in the P group. In partial correlation analyses, significant associations were found: glycaemic level (HbA1c) with insulin resistance, TNF-alpha, CRP and basal and ACTH-stimulated cortisol levels, insulin resistance with plasma NEFA, TNF-alpha and stimulated cortisol levels. Conclusion Poor glycaemic control in patients with T2DM was associated with insulin resistance and with elevated TNF-alpha, CRP and basal as well as stimulated cortisol levels. Inflammatory mediators, e.g. TNF-alpha, may contribute to insulin resistance in hyperglycaemic patients with T2DM and this might be a partial explanation for glucotoxicity.

Place, publisher, year, edition, pages
2006. Vol. 65, no 3, 301-309 p.
Keyword [en]
adipose tissue/*metabolism, adrenocorticotropic hormone/diagnostic use, analysis of variance, blood glucose/analysis, c-reactive protein/analysis, case-control studies, dexamethasone/diagnostic use, diabetes mellitus; type 2/*metabolism, fatty acids, nonesterified/blood, glucocorticoids/diagnostic use, glucose clamp technique, humans, hydrocortisone/blood, insulin resistance, interleukin-6/*metabolism, linear models, stimulation, chemical, tumor necrosis factor-alpha/*metabolism
National Category
Medical and Health Sciences
Identifiers
URN: urn:nbn:se:umu:diva-15370DOI: 10.1111/j.1365-2265.2006.02593.xPubMedID: 16918948OAI: oai:DiVA.org:umu-15370DiVA: diva2:155042
Available from: 2007-07-05 Created: 2007-07-05 Last updated: 2017-12-14Bibliographically approved
In thesis
1. Neurohormonal mechanisms in insulin resistance and type 2 diabetes
Open this publication in new window or tab >>Neurohormonal mechanisms in insulin resistance and type 2 diabetes
2004 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Insulin resistance usually occurs early in the development of type 2 diabetes. An altered balance in the autonomic nervous system and in certain endocrine and inflammatory pathways, might contribute to the development of insulin resistance. In diabetes, hyperglycemia further aggravates insulin resistance as well as beta cell dysfunction but the mechanisms causing this phenomenon, i.e. glucotoxicity, are not fully understood.

Insulin resistance can be demonstrated in healthy first-degree relatives of type 2 diabetes patients who also have a high risk of developing type 2 diabetes. Relatives and control subjects without family history of diabetes were studied with respect to insulin sensitivity and the activity in the autonomic nervous system (ANS) and in the cortisol axis. Levels of sex hormones, leptin and cytokines were analysed. Abdominal adipose tissue distribution was determined with computed tomography.

Male relatives had decreased testosterone levels and increased leptin levels. There was an inverse relationship between insulin sensitivity and leptin levels, and in males a positive association between insulin sensitivity and testosterone levels. A tendency to lower parasympathetic reactivity was found in the relatives using heart rate variability assessment. The sympathetic/parasympathetic ratio during stress provocation was inversely correlated to insulin sensitivity, measured with glucose clamp. The insulin-resistant subjects also exhibited an overall blunted reactivity in the ANS. Cortisol reactivity after stimulation with ACTH and CRH was lower in the relatives. The amount of visceral adipose tissue (VAT) was associated with insulin resistance and with heart rate at rest and during controlled breathing and it also correlated with heart rate and sympathetic/parasympathetic ratio after an orthostatic manoeuvre.

Type 2 diabetic subjects with good and poor glycemic control, respectively, and matched healthy control subjects were examined with respect to insulin sensitivity, cortisol axis activity and blood levels of leptin, sex hormones and the adipocyte-secreted inflammatory factors interleukin-6 (IL-6) and tumor necrosis factor alpha (TNF-α). Biopsies were taken from subcutaneous adipose tissue for determination of adipocyte size. Diabetes subjects were more insulin-resistant than controls and diabetics with poor control exhibited the highest degree of insulin resistance. This group also had the highest levels of TNF-α, morning serum cortisol and non-esterified fatty acids (NEFA). In correlation analyses, significant associations were seen between glycemic level and insulin resistance, TNF-α, IL- 6 and serum cortisol levels. Insulin resistance was positively correlated to NEFA levels, TNF-α and ACTH-stimulated cortisol levels. Adipocyte size was associated with insulin resistance and levels of IL-6 and leptin.

The findings support a connection between insulin resistance and VAT amount, activity in the ANS and blood levels of hormones and adipocyte-derived molecules. Dysregulation in the complex interplay between such factors may contribute to the early pathogenesis of insulin resistance and type 2 diabetes. Adipokines and the cortisol system can also potentially aggravate hyperglycemia in patients with manifest type 2 diabetes.

Place, publisher, year, edition, pages
Umeå: Umeå universitet, 2004. 59 p.
Identifiers
urn:nbn:se:umu:diva-225 (URN)91-7305-591-3 (ISBN)
Public defence
2004-04-24, 09:00
Opponent
Available from: 2004-03-31 Created: 2004-03-31 Last updated: 2010-08-05Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textPubMedPubMed

Search in DiVA

By author/editor
Lindmark, StinaBurén, JonasEriksson, Jan W
By organisation
Medicine
In the same journal
Clinical Endocrinology
Medical and Health Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 117 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf