Change search
ReferencesLink to record
Permanent link

Direct link
The degree of adaptive phenotypic plasticity is correlated with the spatial environmental heterogeneity experienced by island populations of Rana temporaria.
Umeå University, Faculty of Science and Technology, Ecology and Environmental Science.
Umeå University, Faculty of Science and Technology, Ecology and Environmental Science.
2007 (English)In: Journal of Evolutionary Biology, ISSN 1010-061X, Vol. 20, no 4, 1288-1297 p.Article in journal (Refereed) Published
Abstract [en]

Although theoretical models have identified environmental heterogeneity as a prerequisite for the evolution of adaptive plasticity, this relationship has not yet been demonstrated experimentally. Because of pool desiccation risk, adaptation of development rate is important for many amphibians. In a simulated pool-drying experiment, we compared the development time and phenotypic plasticity in development time of populations of the common frog Rana temporaria, originating from 14 neighbouring islands off the coast of northern Sweden. Drying regime of pools used by frogs for breeding differed within and among the islands. We found that the degree of phenotypic plasticity in development time was positively correlated with the spatial variation in the pool-drying regimes present on each island. In addition, local adaptation in development time to the mean drying rate of the pools on each island was found. Hence, our study demonstrates the connection between environmental heterogeneity and developmental plasticity at the island population level, and also highlights the importance of the interplay between local specialization and phenotypic plasticity depending on the local selection pressures.

Place, publisher, year, edition, pages
2007. Vol. 20, no 4, 1288-1297 p.
Keyword [en]
development rate, environmental variation, hydroperiod, local adaptation, phenotypic plasticity, pool drying, Rana temporaria
URN: urn:nbn:se:umu:diva-15418DOI: 10.1111/j.1420-9101.2007.01353.xPubMedID: 17584224OAI: diva2:155090
Available from: 2007-07-12 Created: 2007-07-12 Last updated: 2009-11-05Bibliographically approved
In thesis
1. Phenotypic plasticity and local adaptation in island populations of Rana temporaria
Open this publication in new window or tab >>Phenotypic plasticity and local adaptation in island populations of Rana temporaria
2009 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Phenotypic plasticity is the ability of a genotype to express different phenotypes in different environments. Despite its common occurrence, few have investigated differences in plasticity between populations, the selection pressures responsible for it, and costs and constraints associated with it. In this thesis, I investigated this by studying local adaptation and phenotypic plasticity in populations of the common frog Rana temporaria, inhibiting islands with different pool types (temporary, permanent or both). The tadpoles develop in these pools, and have to finish metamorphosis before the pool dries out.

I found that the tadpoles were locally adapted both in development time and in phenotypic plasticity of development time. Tadpoles from islands with temporary pools had a genetically shorter development time than tadpoles from islands with permanent pools. The population differentiation in development time, estimated as QST, was larger than the population differentiation in neutral molecular markers (FST), which suggest that divergent selection among the populations is responsible for the differentiation. Moreover, tadpoles from islands with more variation in pool drying regimes had higher phenotypic plasticity in development time than tadpoles from islands with only one pool type present. Interestingly, increased migration among populations did not select for increased plasticity, rather it was the local environmental variation that was important. This adaptation has occurred over a short time scale, as the islands are less than 300 generations old.

In temporary pools, it is adaptive to finish development before the pool dries out. This could be achieved by entering the metamorphosis at a smaller size, as a smaller size takes shorter time to reach. However, I found that there is a minimum threshold size below which tadpoles’ cannot enter metamorphosis, and that there had been no evolution of this threshold size in populations living in temporary environments. That suggests that this developmental threshold is tightly linked to physiological constraints in the developmental process.

Despite their expected importance as constrains on the evolution of plasticity, costs of plasticity are often not found in nature.  However, theories of why they are absent have not been tested empirically. In this thesis, I show that fitness costs of phenotypic plasticity are only found in populations with genotypes expressing high levels of phenotypic plasticity, while in populations with low-plastic genotypes, I find costs of not being plastic. This suggests that costs of plasticity increase with increased level of plasticity in the population, and that might be a reason why costs of plasticity are hard to detect.

Place, publisher, year, edition, pages
Umeå: Department of Ecology & Environmental Science, Umeå University, 2009. 58 p.
Costs of plasticity, Developmental threshold, FST, Local adaptation, Phenotypic plasticity, Pool drying, QST
National Category
Research subject
Animal Ecology
urn:nbn:se:umu:diva-26936 (URN)978-91-7264-836-4 (ISBN)
Institutionen för ekologi, miljö och geovetenskap, 901 87, Umeå
Public defence
2009-11-27, KB3B1 (Stora Hörsalen), KBC, Umeå University, Umeå, 10:00 (English)
Available from: 2009-11-06 Created: 2009-11-03 Last updated: 2012-01-31Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textPubMed

Search in DiVA

By author/editor
Lind, MartinJohansson, Frank
By organisation
Ecology and Environmental Science
In the same journal
Journal of Evolutionary Biology

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 91 hits
ReferencesLink to record
Permanent link

Direct link