Change search
ReferencesLink to record
Permanent link

Direct link
IMMUTANS does not act as a stress-induced safety valve in the protection of the photosynthetic apparatus of Arabidopsis during steady-state photosynthesis.
Show others and affiliations
2006 (English)In: Plant Physiology, ISSN 0032-0889, Vol. 142, no 2, 574-85 p.Article in journal (Refereed) Published
Abstract [en]

IMMUTANS (IM) encodes a thylakoid membrane protein that has been hypothesized to act as a terminal oxidase that couples the reduction of O2 to the oxidation of the plastoquinone (PQ) pool of the photosynthetic electron transport chain. Because IM shares sequence similarity to the stress-induced mitochondrial alternative oxidase (AOX), it has been suggested that the protein encoded by IM acts as a safety valve during the generation of excess photosynthetically generated electrons. We combined in vivo chlorophyll fluorescence quenching analyses with measurements of the redox state of P700 to assess the capacity of IM to compete with photosystem I for intersystem electrons during steady-state photosynthesis in Arabidopsis (Arabidopsis thaliana). Comparisons were made between wild-type plants, im mutant plants, as well as transgenics in which IM protein levels had been overexpressed six (OE-6x) and 16 (OE-16x) times. Immunoblots indicated that IM abundance was the only major variant that we could detect between these genotypes. Overexpression of IM did not result in increased capacity to keep the PQ pool oxidized compared to either the wild type or im grown under control conditions (25°C and photosynthetic photon flux density of 150 µmol photons m–2 s–1). Similar results were observed either after 3-d cold stress at 5°C or after full-leaf expansion at 5°C and photosynthetic photon flux density of 150 µmol photons m–2 s–1. Furthermore, IM abundance did not enhance protection of either photosystem II or photosystem I from photoinhibition at either 25°C or 5°C. Our in vivo data indicate that modulation of IM expression and polypeptide accumulation does not alter the flux of intersystem electrons to P700+ during steady-state photosynthesis and does not provide any significant photoprotection. In contrast to AOX1a, meta-analyses of published Arabidopsis microarray data indicated that IM expression exhibited minimal modulation in response to myriad abiotic stresses, which is consistent with our functional data. However, IM exhibited significant modulation in response to development in concert with changes in AOX1a expression. Thus, neither our functional analyses of the IM knockout and overexpression lines nor meta-analyses of gene expression support the model that IM acts as a safety valve to regulate the redox state of the PQ pool during stress and acclimation. Rather, IM appears to be strongly regulated by developmental stage of Arabidopsis.

Place, publisher, year, edition, pages
2006. Vol. 142, no 2, 574-85 p.
Keyword [en]
Acclimatization, Arabidopsis/*metabolism, Arabidopsis Proteins/genetics/*metabolism, Cold, Gene Expression Profiling, Gene Expression Regulation; Plant, Genotype, Molecular Sequence Data, Oxidoreductases/genetics/metabolism, Photosynthesis/genetics/*physiology, Photosystem I Protein Complex/metabolism, Photosystem II Protein Complex/metabolism
URN: urn:nbn:se:umu:diva-15829DOI: doi:10.1104/pp.106.085886PubMedID: 16891546OAI: diva2:155501
Available from: 2007-08-02 Created: 2007-08-02 Last updated: 2015-04-29Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textPubMed

Search in DiVA

By author/editor
Hurry, Vaughan
By organisation
Department of Plant PhysiologyUmeå Plant Science Centre (UPSC)

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 22 hits
ReferencesLink to record
Permanent link

Direct link