Change search
ReferencesLink to record
Permanent link

Direct link
Iron deficiency in cyanobacteria causes monomerization of photosystem I trimers and reduces the capacity for state transitions and the effective absorption cross section of photosystem I in vivo.
Umeå University, Faculty of Science and Technology, Plant Physiology. Umeå Plant Science Centre.
Show others and affiliations
2006 (English)In: Plant Physiology, ISSN 0032-0889, Vol. 141, no 4, 1436-45 p.Article in journal (Refereed) Published
Abstract [en]

The induction of the isiA (CP43') protein in iron-stressed cyanobacteria is accompanied by the formation of a ring of 18 CP43' proteins around the photosystem I (PSI) trimer and is thought to increase the absorption cross section of PSI within the CP43'-PSI supercomplex. In contrast to these in vitro studies, our in vivo measurements failed to demonstrate any increase of the PSI absorption cross section in two strains (Synechococcus sp. PCC 7942 and Synechocystis sp. PCC 6803) of iron-stressed cells. We report that iron-stressed cells exhibited a reduced capacity for state transitions and limited dark reduction of the plastoquinone pool, which accounts for the increase in PSII-related 685 nm chlorophyll fluorescence under iron deficiency. This was accompanied by lower abundance of the NADP-dehydrogenase complex and the PSI-associated subunit PsaL, as well as a reduced amount of phosphatidylglycerol. Nondenaturating polyacrylamide gel electrophoresis separation of the chlorophyll-protein complexes indicated that the monomeric form of PSI is favored over the trimeric form of PSI under iron stress. Thus, we demonstrate that the induction of CP43' does not increase the PSI functional absorption cross section of whole cells in vivo, but rather, induces monomerization of PSI trimers and reduces the capacity for state transitions. We discuss the role of CP43' as an effective energy quencher to photoprotect PSII and PSI under unfavorable environmental conditions in cyanobacteria in vivo.

Place, publisher, year, edition, pages
2006. Vol. 141, no 4, 1436-45 p.
Keyword [en]
Bacterial Proteins/*metabolism/physiology, Immunohistochemistry, Iron/*physiology, Light-Harvesting Protein Complexes/metabolism/physiology, Lipid Metabolism, NADPH Dehydrogenase/metabolism, Oxidation-Reduction, Phase Transition, Phosphatidylglycerols/metabolism, Photosystem I Protein Complex/*metabolism, Photosystem II Protein Complex/metabolism, Synechococcus/enzymology/*metabolism
URN: urn:nbn:se:umu:diva-15863DOI: doi:10.1104/pp.106.082339PubMedID: 16798943OAI: diva2:155535
Available from: 2007-08-03 Created: 2007-08-03 Last updated: 2011-01-11Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textPubMed

Search in DiVA

By author/editor
Selstam, EvaÖquist, Gunnar
By organisation
Plant PhysiologyUmeå Plant Science Centre

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 47 hits
ReferencesLink to record
Permanent link

Direct link