Change search
ReferencesLink to record
Permanent link

Direct link
Expression of several genes involved in sucrose/starch metabolism as affected by different strategies to induce phosphate deficiency in Arabidopsis
Umeå University, Faculty of Science and Technology, Department of Plant Physiology. Umeå University, Faculty of Science and Technology, Umeå Plant Science Centre (UPSC).ORCID iD: 0000-0001-8685-9665
2005 (English)In: Acta Physiologiae Plantarum, Vol. 27, 147-155 p.Article in journal (Refereed) Published
Abstract [en]

The effects of inorganic phosphate (Pi) deficiency on expression of genes encoding ADP-glucose pyrophosphorylase small and large subunits (ApS and ApL1, ApL2, ApL3 genes), UDP-glucose pyrophosphorylase (Ugp gene), sucrose synthase (Sus1), soluble and insoluble acid invertases (Inv and Invcw) and hexokinase (Hxk1 gene), all involved in carbohydrate metabolism, were investigated in Arabidopsis thaliana (L.) Heynh. We used soil-grown pho mutants affected in Pi status, as well as wild-type (wt) plants grown under Pi deficiency conditions in liquid medium, and leaves of wt plants fed with D-mannose. Generally, ApS, ApL1, Ugp and Inv genes were upregulated, although to a varied degree, under conditions of Pi-stress. The applied conditions had differential effects on expression of other genes studied. For instance, Sus1 was downregulated in pho1 (Pi-deficient) mutant, but was unaffected in wt plants grown in liquid medium under P-deficiency. Mannose had distinct concentration-dependent effects on expression of genes under study, possibly reflecting a dual role of mannose as a sink for Pi and as glucose analog. Feeding Pi (at up to 200 mM) to the detached leaves of wt plants strongly affected the expression of ApL1, ApL2, Sus1 and Inv genes, possibly due to an osmotic effect exerted by Pi. The data suggest that ADP-glucose and UDP-glucose pyrophosphorylases (enzymes indirectly involved in Pi recycling) as well as invertases (sucrose hydrolysis) are transcriptionally regulated by Pi-deficiency, which may play a role in homeostatic mechanisms that acclimate the plant to the Pi-stress conditions.

Place, publisher, year, edition, pages
2005. Vol. 27, 147-155 p.
URN: urn:nbn:se:umu:diva-15937DOI: doi:10.1007/s11738-005-0018-2OAI: diva2:155609
Available from: 2007-08-06 Created: 2007-08-06 Last updated: 2015-04-29Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Kleczkowski, Leszek
By organisation
Department of Plant PhysiologyUmeå Plant Science Centre (UPSC)

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 22 hits
ReferencesLink to record
Permanent link

Direct link