umu.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Temperature-dependent changes in respiration rates and redox poise of the ubiquinone pool in protoplasts and isolated mitochondria of potato leaves
Show others and affiliations
2007 (English)In: Physiologia Plantarum, Vol. 129, 175-184 p.Article in journal (Refereed) Published
Abstract [en]

In many environments, leaves experience large diurnal variations in temperature. Such short-term changes in temperature are likely to have important implications for respiratory metabolism in leaves. Here, we used intact leaf, protoplasts and isolated mitochondria to determine the impact of short-term changes in temperature on respiration rates (R), adenylate concentrations and the redox poise of the ubiquinone (UQ) pool in mitochondria of potato leaves. The Q10 (i.e. proportional change in R for each 10°C rise in temperature) of respiration was 1.8, both for intact leaves and protoplasts. In protoplasts, the redox poise of the extracted UQ pool (UQR/UQT) increased from 0.33 at 22°C, to 0.76 at 15°C. Further decreases in temperature (from 15 to 5°C) resulted in UQR/UQT decreasing to 0.40. Adenylate ratios in protoplasts were also temperature dependent. At high adenosine 5'-triphosphate (ATP) adenosine 5'-diphosphate (ADP) ratios (i.e. low ADP concentrations), UQR/UQT values were low, suggesting that adenylates restricted flux via the UQ-reducing pathways more than they restricted flux via pathways that oxidized UQH2. To assess whether high rates of alternative oxidase (AOX) activity could have uncoupled respiratory flux (and thus UQR/UQT) from adenylate restriction of the cytochrome (Cyt) pathway, we constructed kinetic curves of O2 uptake (via the two pathways) vs UQR/UQT in isolated mitochondria, measured at two temperatures (15 and 25°C); measurements were made for mitochondria operating under state 3 (i.e. +ADP) and state 4 (i.e. −ADP) conditions. In contrast to the Cyt pathway, flux via the AOX was temperature insensitive, with maximal rates of AOX activity representing 21–57% of total O2 uptake in isolated mitochondria. We conclude that temperature-dependent variations in UQR/UQT are largely dependent on temperature-dependent changes in adenylate ratios, and that flux via the AOX could in some circumstances help reduce maximal UQ values.

Place, publisher, year, edition, pages
2007. Vol. 129, 175-184 p.
Identifiers
URN: urn:nbn:se:umu:diva-15940DOI: doi:10.1111/j.1399-3054.2006.00823.xOAI: oai:DiVA.org:umu-15940DiVA: diva2:155612
Available from: 2007-08-06 Created: 2007-08-06 Last updated: 2015-04-29Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Authority records BETA

Gardeström, Per

Search in DiVA

By author/editor
Gardeström, Per
By organisation
Department of Plant PhysiologyUmeå Plant Science Centre (UPSC)

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 76 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf