Change search
ReferencesLink to record
Permanent link

Direct link
Temperature-dependent changes in respiration rates and redox poise of the ubiquinone pool in protoplasts and isolated mitochondria of potato leaves
Show others and affiliations
2007 (English)In: Physiologia Plantarum, Vol. 129, 175-184 p.Article in journal (Refereed) Published
Abstract [en]

In many environments, leaves experience large diurnal variations in temperature. Such short-term changes in temperature are likely to have important implications for respiratory metabolism in leaves. Here, we used intact leaf, protoplasts and isolated mitochondria to determine the impact of short-term changes in temperature on respiration rates (R), adenylate concentrations and the redox poise of the ubiquinone (UQ) pool in mitochondria of potato leaves. The Q10 (i.e. proportional change in R for each 10°C rise in temperature) of respiration was 1.8, both for intact leaves and protoplasts. In protoplasts, the redox poise of the extracted UQ pool (UQR/UQT) increased from 0.33 at 22°C, to 0.76 at 15°C. Further decreases in temperature (from 15 to 5°C) resulted in UQR/UQT decreasing to 0.40. Adenylate ratios in protoplasts were also temperature dependent. At high adenosine 5'-triphosphate (ATP) adenosine 5'-diphosphate (ADP) ratios (i.e. low ADP concentrations), UQR/UQT values were low, suggesting that adenylates restricted flux via the UQ-reducing pathways more than they restricted flux via pathways that oxidized UQH2. To assess whether high rates of alternative oxidase (AOX) activity could have uncoupled respiratory flux (and thus UQR/UQT) from adenylate restriction of the cytochrome (Cyt) pathway, we constructed kinetic curves of O2 uptake (via the two pathways) vs UQR/UQT in isolated mitochondria, measured at two temperatures (15 and 25°C); measurements were made for mitochondria operating under state 3 (i.e. +ADP) and state 4 (i.e. −ADP) conditions. In contrast to the Cyt pathway, flux via the AOX was temperature insensitive, with maximal rates of AOX activity representing 21–57% of total O2 uptake in isolated mitochondria. We conclude that temperature-dependent variations in UQR/UQT are largely dependent on temperature-dependent changes in adenylate ratios, and that flux via the AOX could in some circumstances help reduce maximal UQ values.

Place, publisher, year, edition, pages
2007. Vol. 129, 175-184 p.
URN: urn:nbn:se:umu:diva-15940DOI: doi:10.1111/j.1399-3054.2006.00823.xOAI: diva2:155612
Available from: 2007-08-06 Created: 2007-08-06 Last updated: 2015-04-29Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Gardeström, Per
By organisation
Department of Plant PhysiologyUmeå Plant Science Centre (UPSC)

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 52 hits
ReferencesLink to record
Permanent link

Direct link