umu.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
The organization, regulation and phylogeny of uptake hydrogenase genes in Frankia
Umeå University, Faculty of Science and Technology, Department of Plant Physiology.
Université de Lyon, Lyon, France .
Umeå University, Faculty of Science and Technology, Department of Plant Physiology. Umeå University, Faculty of Science and Technology, Umeå Plant Science Centre (UPSC).ORCID iD: 0000-0002-0536-903X
2007 (English)In: Physiologia Plantarum: An International Journal for Plant Biology, ISSN 0031-9317, E-ISSN 1399-3054, Vol. 130, no 3, 464-470 p.Article in journal (Refereed) Published
Abstract [en]

Frankia alni ACN14a, Frankia sp. CcI3 and Frankia sp. EAN1pec, which have different host specificity and geographical distribution, have two uptake hydrogenase syntons in their genome: hydrogenase synton#1 and hydrogenase synton#2. The organization of hydrogenase genes on these syntons also varies. Phylogenetic analysis of the structural genes of these syntons showed that they were significantly divergent and that hydrogenase synton#1 subunits of these Frankia strains were probably ancestral among the actinobacteria. Hydrogenase gene duplication might have occurred long before emergence of the three Frankia lineages. The structural subunits of hydrogenase HupS2 and HupL2 (synton#2) of F. alni ACN14a and Frankia sp. CcI3, which belong to phylogenetic Frankia cluster 1, were grouped closely together but away from Frankia sp. EAN1pec, which belongs to Frankia cluster 3. Phylogenetic analysis showed the occurrence of lateral transfer of hupL2 in Frankia sp. EAN1pec to or from Geobacter sulfurreducens. The transcript levels of hupS1 and hupL1 relative to hupS2 and hupL2 were higher in F. alni ACN14a grown under free-living conditions. Under symbiotic conditions, transcript levels of hupS2 and hupL2 were higher than those of hupS1 and hupL1. Hydrogenase subunits of synton#1 are more expressed under free-living conditions, whereas those of synton#2 are mainly involved in symbiotic interactions.

Place, publisher, year, edition, pages
Copenhagen: Munksgaard , 2007. Vol. 130, no 3, 464-470 p.
Identifiers
URN: urn:nbn:se:umu:diva-16001DOI: 10.1111/j.1399-3054.2007.00861.xOAI: oai:DiVA.org:umu-16001DiVA: diva2:155674
Available from: 2007-08-09 Created: 2007-08-09 Last updated: 2015-04-29Bibliographically approved
In thesis
1. The Biodiversity of Hydrogenases in Frankia: Characterization, regulation and phylogeny
Open this publication in new window or tab >>The Biodiversity of Hydrogenases in Frankia: Characterization, regulation and phylogeny
2007 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

All the eighteen Frankia strains isolated from ten different actinorhizal host plants showed uptake hydrogenase activity. The activity of this enzyme is further increased by addition of nickel. Nickel also enhanced the degree of hydrogenase transfer into the membranes of Frankia, indicating the role of this metal in the processing of this enzyme. The uptake hydrogenase of Frankia is most probably a Ni-Fe hydrogenase.

Genome characterization revealed the presence of two hydrogenase genes (syntons) in Frankia, which are distinctively separated in all the three available Frankia genomes. Both hydrogenase syntons are also commonly found in other Frankia strains. The structural, regulatory and accessory genes of both hydrogenase synton #1 and #2 are arranged closely together, but in a clearly contrasting organization. Hydrogenase synton #1 and #2 of Frankia are phylogenetically divergent and that hydrogenase synton #1 is probably ancestral among the actinobacteria. Hydrogenase synton #1 (or synton #2) of Frankia sp. CcI3 and F. alni ACN14a are similar in gene arrangement, content and orientation, while the syntons are both reduced and rearranged in Frankia sp. EANpec. The hydrogenases of Frankia sp. CcI3 and F. alni ACN14a are phylogenetically grouped together but never with the Frankia sp. EAN1pec, which is more closely related to the non-Frankia bacteria than Frankia itself. The tree topology is indicative of a probable gene transfer to or from Frankia that occurred before the emergence of Frankia. All of the available evidence points to hydrogenase gene duplication having occurred long before development of the three Frankia lineages. The uptake hydrogenase synton #1 of Frankia is more expressed under free-living conditions whereas hydrogenases synton #2 is mainly involved in symbiotic interactions. The uptake hydrogenase of Frankia can also be manipulated to play a larger role in increasing the efficiency of nitrogen fixation in the root nodules of the host plants, there by minimizing the need for environmentally unfriendly and costly fertilizers.

The hydrogen-evolving hydrogenase activity was recorded in only four Frankia strains: F. alni UGL011101, UGL140102, Frankia sp. CcI3 and R43. After addition of 15mM Nicl2, activity was also detected in F. alni UGL011103, Frankia sp. UGL020602, UGL020603 and 013105. Nickel also increased the activity of hydrogen-evolving hydrogenases in Frankia, indicating that Frankia may have different types of hydrogen-evolving hydrogenases, or that the hydrogen-evolving hydrogenases may at least be regulated differently in different Frankia strains. The fact that Frankia can produce hydrogen is reported only recently. The knowledge of the molecular biology of Frankia hydrogenase is, therefore, of a paramount importance to optimize the system in favor of hydrogen production. Frankia is an attractive candidate in search for an organism efficient in biological hydrogen production since it can produce a considerable amount of hydrogen.

Place, publisher, year, edition, pages
Umeå: Fysiologisk botanik, 2007. 63 p.
Keyword
Biodiversity, Frankia, immunoblotting, gene expression, uptake hydrogenase, hydrogen-evolving hydrogenase, nickel, phylogeny
National Category
Biochemistry and Molecular Biology
Identifiers
urn:nbn:se:umu:diva-1435 (URN)978-91-7264-444-1 (ISBN)
Public defence
2007-12-07, KB3A9, KBC, Umeå University, Umeå, 10:00 (English)
Opponent
Supervisors
Available from: 2007-11-16 Created: 2007-11-16 Last updated: 2011-03-14Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Leul, MelakeselamSellstedt, Anita
By organisation
Department of Plant PhysiologyUmeå Plant Science Centre (UPSC)
In the same journal
Physiologia Plantarum: An International Journal for Plant Biology

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 80 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf