umu.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Estrogen and progesterone receptors in ovarian epithelial tumors.
Umeå University, Faculty of Medicine, Clinical Sciences, Obstetrics and Gynaecology.
Umeå University, Faculty of Medicine, Clinical Sciences, Obstetrics and Gynaecology.
Show others and affiliations
2004 (English)In: Mol Cell Endocrinol, ISSN 0303-7207, Vol. 221, no 1-2, 97-104 p.Article in journal (Refereed) Published
Place, publisher, year, edition, pages
2004. Vol. 221, no 1-2, 97-104 p.
Keyword [en]
Carcinoma/diagnosis/*metabolism, Epithelial Cells/metabolism, Female, Humans, Ki-67 Antigen/analysis, Middle Aged, Ovarian Neoplasms/diagnosis/*metabolism, Receptors; Estrogen/analysis/*metabolism, Receptors; Progesterone/analysis/*metabolism, Tumor Suppressor Protein p53/analysis
Identifiers
URN: urn:nbn:se:umu:diva-16944PubMedID: 15223136OAI: oai:DiVA.org:umu-16944DiVA: diva2:156617
Available from: 2007-10-22 Created: 2007-10-22 Last updated: 2011-01-12Bibliographically approved

Open Access in DiVA

No full text

Other links

PubMedhttp://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed&cmd=Retrieve&list_uids=15223136&dopt=Citation

Authority records BETA

Bäckström, Torbjörn

Search in DiVA

By author/editor
Bäckström, Torbjörn
By organisation
Obstetrics and Gynaecology

Search outside of DiVA

GoogleGoogle Scholar

pubmed
urn-nbn

Altmetric score

pubmed
urn-nbn
Total: 27 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf