Change search
ReferencesLink to record
Permanent link

Direct link
Photoinactivation of photosystem II in leaves
Umeå University, Faculty of Science and Technology, Department of Plant Physiology. Umeå University, Faculty of Science and Technology, Umeå Plant Science Centre (UPSC). Research School of Biological Sciences, Australian National University, GPO Box 475, Canberra, ACT 2601, Australia.
Show others and affiliations
2005 (English)In: Photosynthesis Research, ISSN 0166-8595, E-ISSN 1573-5079, Vol. 84, no 1-3, 35-41 p.Article in journal (Refereed) Published
Abstract [en]

Photoinactivation of Photosystem II (PS II), the light-induced loss of ability to evolve oxygen, inevitably occurs under any light environment in nature, counteracted by repair. Under certain conditions, the extent of photoinactivation of PS II depends on the photon exposure (light dosage, x), rather than the irradiance or duration of illumination per se, thus obeying the law of reciprocity of irradiance and duration of illumination, namely, that equal photon exposure produces an equal effect. If the probability of photoinactivation (p) of PS II is directly proportional to an increment in photon exposure (p = kDeltax, where k is the probability per unit photon exposure), it can be deduced that the number of active PS II complexes decreases exponentially as a function of photon exposure: N = Noexp(-kx). Further, since a photon exposure is usually achieved by varying the illumination time (t) at constant irradiance (I), N = Noexp(-kI t), i.e., N decreases exponentially with time, with a rate coefficient of photoinactivation kI, where the product kI is obviously directly proportional to I. Given that N = Noexp(-kx), the quantum yield of photoinactivation of PS II can be defined as -dN/dx = kN, which varies with the number of active PS II complexes remaining. Typically, the quantum yield of photoinactivation of PS II is ca. 0.1micromol PS II per mol photons at low photon exposure when repair is inhibited. That is, when about 10(7) photons have been received by leaf tissue, one PS II complex is inactivated. Some species such as grapevine have a much lower quantum yield of photoinactivation of PS II, even at a chilling temperature. Examination of the longer-term time course of photoinactivation of PS II in capsicum leaves reveals that the decrease in N deviates from a single-exponential decay when the majority of the PS II complexes are inactivated in the absence of repair. This can be attributed to the formation of strong quenchers in severely-photoinactivated PS II complexes, able to dissipate excitation energy efficiently and to protect the remaining active neighbours against damage by light.

Place, publisher, year, edition, pages
Dordrecht: Springer, 2005. Vol. 84, no 1-3, 35-41 p.
Keyword [en]
law of reciprocity, photoinactivation of Photosystem II, quantum yield of photoinactivation, quenching of excitation energy
National Category
Plant Biotechnology
URN: urn:nbn:se:umu:diva-18877DOI: 10.1007/s11120-005-0410-1ISI: 000230845200007PubMedID: 16049752OAI: diva2:175011
International Satellite Meeting in honor of Norio Murata on Photosynthesis and the Post-Genomic Era, Trois Rivieres, CANADA, AUG 25-28, 2004
Available from: 2009-02-26 Created: 2009-02-26 Last updated: 2016-08-15Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textPubMed

Search in DiVA

By author/editor
Hendrickson, Luke
By organisation
Department of Plant PhysiologyUmeå Plant Science Centre (UPSC)
In the same journal
Photosynthesis Research
Plant Biotechnology

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 27 hits
ReferencesLink to record
Permanent link

Direct link