Open this publication in new window or tab >>Show others...
2022 (English)In: Science Advances, E-ISSN 2375-2548, Vol. 8, no 43, article id eabn7558Article in journal (Refereed) Published
Abstract [en]
Integrating structural information and metadata, such as gender, social status, or interests, enriches networks and enables a better understanding of the large-scale structure of complex systems. However, existing approaches to augment networks with metadata for community detection only consider immediately adjacent nodes and cannot exploit the nonlocal relationships between metadata and large-scale network structure present in many spatial and social systems. Here, we develop a flow-based community detection framework based on the map equation that integrates network information and metadata of distant nodes and reveals more complex relationships. We analyze social and spatial networks and find that our methodology can detect functional metadata-informed communities distinct from those derived solely from network information or metadata. For example, in a mobility network of London, we identify communities that reflect the heterogeneity of income distribution, and in a European power grid network, we identify communities that capture relationships between geography and energy prices beyond country borders.
Place, publisher, year, edition, pages
American Association for the Advancement of Science (AAAS), 2022
National Category
Computer Sciences
Identifiers
urn:nbn:se:umu:diva-200999 (URN)10.1126/sciadv.abn7558 (DOI)000890263700001 ()36306360 (PubMedID)2-s2.0-85141005553 (Scopus ID)
2022-11-162022-11-162023-09-05Bibliographically approved