Change search
ReferencesLink to record
Permanent link

Direct link
Transient transformation and RNA silencing in Zinnia tracheary element differentiating cell cultures.
Umeå University, Faculty of Science and Technology, Department of Plant Physiology. Umeå University, Faculty of Science and Technology, Umeå Plant Science Centre (UPSC).ORCID iD: 0000-0002-6959-3284
Show others and affiliations
2008 (English)In: The Plant journal : for cell and molecular biology, ISSN 1365-313X, Vol. 53, no 5, 864-75 p.Article in journal (Refereed) Published
Abstract [en]

The Zinnia elegans cell culture system is a robust and physiologically relevant in vitro system for the study of xylem formation. Freshly isolated mesophyll cells of Zinnia can be hormonally induced to semisynchronously transdifferentiate into tracheary elements (TEs). Although the system has proven to be valuable, its utility is diminished by the lack of an efficient transformation protocol. We herein present a novel method to introduce DNA/RNA efficiently into Zinnia cells by electroporation-based transient transformation. Using reporter gene plasmids, we optimized the system for efficiency of transformation and ability for the transformed cells to transdifferentiate into TEs. Optimal conditions included a partial digestion of the cell walls by pectolyase, a low voltage and high capacitance electrical pulse and an optimal medium to maintain cell viability during transformation. Beyond the simple expression of a reporter protein in Zinnia cells, we extended our protocol to subcellular protein targeting, simultaneous co-expression of several reporter proteins and promoter-activity monitoring during TE differentiation. Most importantly, we tested the system for double-stranded RNA (dsRNA)-induced RNA silencing. By introducing in vitro-synthesized dsRNAs, we were able to phenocopy the Arabidopsis cellulose synthase (CesA) mutants that had defects in secondary cell-wall synthesis. Suppressing the expression ofZinnia CesA homologues resulted in an increase of abnormal TEs with aberrant secondary walls. Our electroporation-based transient transformation protocol provides the suite of tools long required for functional analysis and developmental studies at single cell levels.

Place, publisher, year, edition, pages
2008. Vol. 53, no 5, 864-75 p.
URN: urn:nbn:se:umu:diva-18895DOI: 10.1111/j.1365-313X.2007.03377.xPubMedID: 18036203OAI: diva2:175072
Available from: 2009-02-26 Created: 2009-02-26 Last updated: 2015-04-29

Open Access in DiVA

No full text

Other links

Publisher's full textPubMed

Search in DiVA

By author/editor
Pesquet, Edouard
By organisation
Department of Plant PhysiologyUmeå Plant Science Centre (UPSC)

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 54 hits
ReferencesLink to record
Permanent link

Direct link