Umeå University's logo

umu.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Exploring 3D community inconsistency in human chromosome contact networks
Umeå University, Faculty of Science and Technology, Department of Physics.ORCID iD: 0000-0002-6618-8232
Department of Physics and Research Institute of Natural Science, Gyeongsang National University, Jinju, Republic of Korea; Future Convergence Technology Research Institute, Gyeongsang National University, Jinju, Republic of Korea.ORCID iD: 0000-0003-3079-5679
Umeå University, Faculty of Science and Technology, Department of Physics.ORCID iD: 0000-0003-3174-8145
2023 (English)In: Journal of physics. Complexity, ISSN 2632-072X, Vol. 4, no 3, article id 035004Article in journal (Other academic) Published
Abstract [en]

Researchers developed chromosome capture methods such as Hi-C to better understand DNA's 3D folding in nuclei. The Hi-C method captures contact frequencies between DNA segment pairs across the genome. When analyzing Hi-C data sets, it is common to group these pairs using standard bioinformatics methods (e.g., PCA). Other approaches handle Hi-C data as weighted networks, where connected node represent DNA segments in 3D proximity. In this representation, one can leverage community detection techniques developed in complex network theory to group nodes into mesoscale communities containing similar connection patterns. While there are several successful attempts to analyze Hi-C data in this way, it is common to report and study the most typical community structure. But in reality, there are often several valid candidates. Therefore, depending on algorithm design, different community detection methods focusing on slightly different connectivity features may have differing views on the ideal node groupings. In fact, even the same community detection method may yield different results if using a stochastic algorithm. This ambiguity is fundamental to community detection and shared by most complex networks whenever interactions span all scales in the network. This is known as community inconsistency. This paper explores this inconsistency of 3D communities in Hi-C data for all human chromosomes. We base our analysis on two inconsistency metrics, one local and one global, and quantify the network scales where the community separation is most variable. For example, we find that TADs are less reliable than A/B compartments and that nodes with highly variable node-community memberships are associated with open chromatin. Overall, our study provides a helpful framework for data-driven researchers and increases awareness of some inherent challenges when clustering Hi-C data into 3D communities.

Place, publisher, year, edition, pages
Institute of Physics (IOP), 2023. Vol. 4, no 3, article id 035004
National Category
Other Computer and Information Science Other Physics Topics
Identifiers
URN: urn:nbn:se:umu:diva-207414DOI: 10.1088/2632-072X/acef9dISI: 001053340900001Scopus ID: 2-s2.0-85169581550OAI: oai:DiVA.org:umu-207414DiVA, id: diva2:1753306
Funder
Swedish Research Council, 2021-04080
Note

Originally included in thesis in manuscript form.

Available from: 2023-04-26 Created: 2023-04-26 Last updated: 2023-09-11Bibliographically approved
In thesis
1. Exploring the multiscale 3D architecture of human chromosome contact networks
Open this publication in new window or tab >>Exploring the multiscale 3D architecture of human chromosome contact networks
2023 (English)Doctoral thesis, comprehensive summary (Other academic)
Alternative title[sv]
Utforskande av den flerskaliga 3D-arkitekturen hos mänskliga kromosomnätverk​
Abstract [en]

Cells regulate genes to coordinate essential functions allowing cells to grow, divide, specialize, and respond to stresses. While regulatory proteins are the most common way to control these genes, the DNA’s 3D structure also plays a critical role as it affects how proteins access genes and how regulatory DNA elements interact over large genomic distances. This thesis explores the latter aspect of gene regulation by mapping DNA’s 3D multiscale architecture and exploring the within-scale variability.

To study these aspects, we analyzed empirical DNA-DNA contact data from a technique known as Hi-C. This technique measures the contact frequency between pairs of points on DNA. To infer multiscale DNA 3D structures from this data set, we adopt and develop a community detection framework that finds the groups of interconnected DNA regions. Rooted in network science, this approach allowed us to study the DNA’s ensemble-averaged 3D organization while embracing its complexity and variability.

In this work, we mapped DNA’s multiscale 3D architecture and demonstrated how our community detection algorithm charts the structural scales in regimes that are often opaque to other computational tools. We also addressed several specific research questions. First, we explored cross-scale 3D structures, quantifying to what extent their interactions are hierarchical. We also determined the scales where the 3D structures seem most robust and quantified the DNA's structural ambiguities. Additionally, we explored the association between DNA's 3D architecture and epigenetic states. Finally, we demonstrated how our framework applies to another DNA contact data set (HiChIP) that may be useful to better understand spatial rearrangements in cancer cells. 

Abstract [sv]

Celler reglerar gener för att koordinera grundläggande funktioner som möjliggör celldelning, specialisering och stressrespons. Även om celler oftast använder reglerande proteiner för att kontrollera dessa gener, spelar även DNA:s 3D-struktur en kritisk roll eftersom den påverkar hur enkelt proteiner kommer åt generna och hur reglerande DNA-element interagerar över stora genetiska avstånd. Denna avhandling utforskar den senare aspekten av genreglering genom att kartlägga DNA:s skalberoende 3D-arkitektur samt strukturvariabiliteten inom varje skala.

För att studera dessa aspekter analyserade vi empiriskt DNA-DNA-kontaktdata från en teknik som kallas Hi-C. Denna teknik mäter kontaktfrekvensen mellan parvisa DNA-segment. För att hitta DNA:s 3D-strukturer från Hi-C data utvecklar en metod som hittar grupper av tätt sammanlänkade DNA-regioner på olika nivåer. Denna metod är utvecklad inom nätverksforskning, och den hjälper oss att studera DNA:s genomsnittliga 3D-organisation över en cellpopulation. 

I detta arbete kartlade vi DNA:s 3D-struktur och visade hur vår algoritm kan detektera tätt sammanlänkade grupper av DNA-segment (”communities”) som andra beräkningsverktyg har svårt att hitta. Vi använde vår metod för att undersökte flera specifika forskningsfrågor. För det första utforskade vi i vilken utsträckning DNA-interaktioner är hierarkiska. Vi fastställde också nivåer där 3D-strukturerna verkar vara mest robusta och där de är mest instabila. Dessutom utforskade vi sambandet mellan DNA:s 3D-arkitektur och epigenetiskt tillstånd. Slutligen visade vi hur vår metod kan appliceras på et annat DNA-kontakt data än Hi-C (HiChIP). Vår studie kan vara användbar för att bättre förstå kritiska omkopplingar av DNA-kontakter i cancerceller.

Place, publisher, year, edition, pages
Umeå: Umeå University, 2023. p. 75
Keywords
community detection, DNA 3D organization, Hi-C, network science, DNA-DNA contact data
National Category
Bioinformatics (Computational Biology) Other Physics Topics
Identifiers
urn:nbn:se:umu:diva-207681 (URN)978-91-8070-065-8 (ISBN)978-91-8070-066-5 (ISBN)
Public defence
2023-05-24, NAT.D.410, Naturvetarhuset, Umeå, 09:00 (English)
Opponent
Supervisors
Available from: 2023-05-03 Created: 2023-04-27 Last updated: 2023-05-03Bibliographically approved

Open Access in DiVA

fulltext(4920 kB)72 downloads
File information
File name FULLTEXT01.pdfFile size 4920 kBChecksum SHA-512
f15ceb4ada5003363a34f405d1fc87a085cd8cc8f4317a38fd49c20d351b971763f94dfa9348bff95f37f049ab7d1beab03ae226847ee8d5e700259c05c1828f
Type fulltextMimetype application/pdf

Other links

Publisher's full textScopusArXiv (preprint)

Authority records

Bernenko, DoloresLee, Sang HoonLizana, Ludvig

Search in DiVA

By author/editor
Bernenko, DoloresLee, Sang HoonLizana, Ludvig
By organisation
Department of Physics
Other Computer and Information ScienceOther Physics Topics

Search outside of DiVA

GoogleGoogle Scholar
Total: 72 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 233 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf