Umeå University's logo

umu.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Numerical solution of kinetic SPDEs via stochastic Magnus expansion
Dipartimento di Matematica, Universita di Bologna, Bologna, Italy.ORCID iD: 0000-0003-2881-0905
Dipartimento di Matematica, Universita di Bologna, Bologna, Italy.ORCID iD: 0000-0003-4329-7054
Dipartimento di Matematica, Universita di Bologna, Bologna, Italy.ORCID iD: 0000-0001-8837-5568
2023 (English)In: Mathematics and Computers in Simulation, ISSN 0378-4754, E-ISSN 1872-7166, Vol. 207, p. 189-208Article in journal (Refereed) Published
Abstract [en]

In this paper, we show how the Itô-stochastic Magnus expansion can be used to efficiently solve stochastic partial differential equations (SPDE) with two space variables numerically. To this end, we will first discretize the SPDE in space only by utilizing finite difference methods and vectorize the resulting equation exploiting its sparsity.

As a benchmark, we will apply it to the case of the stochastic Langevin equation with constant coefficients, where an explicit solution is available, and compare the Magnus scheme with the Euler–Maruyama scheme. We will see that the Magnus expansion is superior in terms of both accuracy and especially computational time by using a single GPU and verify it in a variable coefficient case. Notably, we will see speed-ups of order ranging form 20 to 200 compared to the Euler–Maruyama scheme, depending on the accuracy target and the spatial resolution.

Place, publisher, year, edition, pages
Elsevier, 2023. Vol. 207, p. 189-208
National Category
Probability Theory and Statistics
Identifiers
URN: urn:nbn:se:umu:diva-207733DOI: 10.1016/j.matcom.2022.12.029ISI: 000923513000001Scopus ID: 2-s2.0-85145777195OAI: oai:DiVA.org:umu-207733DiVA, id: diva2:1753876
Funder
EU, Horizon 2020, 813261Available from: 2023-05-01 Created: 2023-05-01 Last updated: 2023-05-02Bibliographically approved

Open Access in DiVA

fulltext(1059 kB)163 downloads
File information
File name FULLTEXT01.pdfFile size 1059 kBChecksum SHA-512
6816a9e0b0ed78dbe9282edb0879b278436b6e3868467413a578894aab23d35677b2095777939fd0d4c867434345513cb369fa2974718d4b582fca1674811008
Type fulltextMimetype application/pdf

Other links

Publisher's full textScopus

Authority records

Kamm, Kevin

Search in DiVA

By author/editor
Kamm, KevinPagliarani, StefanoPascucci, Andrea
In the same journal
Mathematics and Computers in Simulation
Probability Theory and Statistics

Search outside of DiVA

GoogleGoogle Scholar
Total: 164 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 302 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf