Umeå University's logo

umu.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Multi-Class Classification for Predicting Customer Satisfaction: Application of machine learning methods to predict customer satisfaction at IKEA
Umeå University, Faculty of Science and Technology, Department of Mathematics and Mathematical Statistics.
Umeå University, Faculty of Science and Technology, Department of Mathematics and Mathematical Statistics.
2023 (English)Independent thesis Advanced level (professional degree), 20 credits / 30 HE creditsStudent thesis
Abstract [en]

Gaining a comprehensive understanding of the features that contribute to customer satisfaction after contact with IKEA’s Remote Customer Meeting Points (RCMPs) is essential for implementing effective remedial measures in the future. The aim of this project is to investigate if it is possible to find key features that influence customer satisfaction and to use these to predict customer satisfaction.

The task has been approached as a multi-class classification problem, with the objective of classifying the observations into five distinct levels of customer satisfaction. The study utilized three models, Multinomial Logistic Regression, Random Forest, and Extreme Gradient Boosting, to investigate these possibilities. Based on the methods used and the available data, the results indicate that it is currently not feasible to accurately identify key features or predict customer satisfaction.

Abstract [sv]

Att förstå vilka faktorer som bidrar till kundnöjdhet efter en kontakt med IKEAs RCMPs är avgörande för att kunna genomföra effektiva åtgärder i framtiden. Syftet med detta projekt är att undersöka om det är möjligt att hitta nyckelfaktorer som påverkar kundnöjdhet och använda dessa för att prediktera kundnöjdhet.

Uppgiften har angripits som ett multi-klass klassificeringsproblem, med syftet att klas- sificera observationerna i fem olika nivåer av kundnöjdhet. Studien har utvärderat tre olika modeller, Multinomial Logistic Regression, Random Forest och Extreme Gradient Boosting, för att undersöka dessa möjligheter. Baserat på de använda metoderna med tillgängliga data, indikerar resultaten att det för tillfället inte är möjligt att identifiera nyckelfaktorer eller prediktera kundnöjdhet med hög noggrannhet.

Place, publisher, year, edition, pages
2023. , p. 44
Keywords [en]
Multi-Class Classification, Imbalanced Data, Machine Learning
Keywords [sv]
Multi-Klass Klassifisering, Obalanserat Data, Maskininlärning
National Category
Mathematics
Identifiers
URN: urn:nbn:se:umu:diva-209700OAI: oai:DiVA.org:umu-209700DiVA, id: diva2:1766655
External cooperation
IKEA
Educational program
Master of Science in Engineering and Management
Supervisors
Examiners
Available from: 2023-06-14 Created: 2023-06-13 Last updated: 2023-06-14Bibliographically approved

Open Access in DiVA

fulltext(5458 kB)708 downloads
File information
File name FULLTEXT01.pdfFile size 5458 kBChecksum SHA-512
b5ca6702e798af40ca10f3b311d6df5aac0df144e92376b6a6a063c752e83a4aa19f7c8c18af3108851ee05e4f48d107962d90996d6009bf140ac5c20668cf57
Type fulltextMimetype application/pdf

By organisation
Department of Mathematics and Mathematical Statistics
Mathematics

Search outside of DiVA

GoogleGoogle Scholar
Total: 708 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 1261 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf