Umeå University's logo

umu.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Exploring the fate of emerging contaminants during hydrothermal regeneration of carbonaceous adsorbents
Umeå University, Faculty of Science and Technology, Department of Chemistry.
2023 (English)Doctoral thesis, comprehensive summary (Other academic)Alternative title
Studier av ödet för nya föroreningar under hydrotermisk regenerering av koladsorbenter (Swedish)
Abstract [en]

Wastewater from households and industries commonly contain emerging contaminants that are not easily removed by most wastewater treatment plants. These contaminants can be removed through adsorption onto adsorbents, such as activated carbon or biochars. Previously, attention has been given to waste residues from the agriculture and forestry industry as potential raw materials for activated biochars, which could replace coal and coconut, common feedstocks for activated carbon production. This thesis investigates the factors governing the adsorption efficiencies of these activated biochars and explores the potential of hydrothermal regeneration as a post-treatment. 

The adsorption experiments showed that iron-doped (i.e., magnetic) activated biochar had two times more adsorption capacity than non-doped activated biochar (i.e., non-magnetic). However, the adsorption capacity of magnetic activated biochar was still inferior to activated carbon for removing sulfamethoxazole (8 mg/g vs. 42 mg/g) and caffeine (40 vs. 56 mg/g). Of the three conditions tested (i.e., salts, humic acids, and pH), only pH had a significant influence on the adsorption of the three selected contaminants onto activated biochars, and the biochars preferentially adsorbed neutral species. This observation is most likely explained by the π-π bonds. 

Hydrothermal regeneration effectively degraded trimethoprim, sulfamethoxazole, and caffeine at temperatures above 240 °C in the absence of adsorbent. Only trimethoprim generated transformation products that could be identified and quantified from non-targeted analysis. In presence of adsorbent, caffeine was not completely degraded at 280 or even 320 °C, suggesting that the activated biochars adsorb and to some extent shelter the contaminants from degradation.

After hydrothermal regeneration, the activated biochars had an enhanced adsorption capacity for sulfamethoxazole, whereas lower adsorption capacity was observed for trimethoprim and caffeine. These changes in performance are believed to be related to the alteration of surface characteristics of activated biochar induced by the adsorbed contaminants during the hydrothermal reaction. Overall, the regeneration efficiency for the activated biochars was found to exceed 50 %. After three regeneration cycles, the regeneration efficiency was as high as 320 %. The results of this thesis suggest that activated biochars could remove emerging contaminants in water and hydrothermal regeneration could degrade most of the emerging contaminants, allowing the spent adsorbent to be reused.

Abstract [sv]

Avloppsvatten från hushåll och industrier innehåller ofta nya föroreningar (så kallade ’emerging contaminants’) som avloppsreningsverk inte är utformade för att avskilja. En effektiv metod för att avlägsna dessa nya föroreningar är genom adsorption på exempelvis aktivt kol eller biokol. Råvaran för produktion av aktivt kol är, utöver specialiserade råvaror som kokosnötskal, ofta stenkol eller brunkol, vilket medför klimat- och resurshushållningsmässiga utmaningar. För att övervinna dessa utmaningar har restprodukter från jordbruks- och skogsindustrin de senaste åren fått ökad uppmärksamhet som potentiella råvaror för aktiverade biokol. Den här avhandlingen syftar till att öka förståelsen kring de faktorer som styr adsorptions-effektiviteten för aktiverade biokol och att utforska potentialen för hydrotermisk regenerering som en möjlig efterbehandling. Hydrotermisk regenerering innebär att man hettar upp kolmaterialen till 180–320 °C i en sluten behållare, liknande den industriella processen hydrotermisk förkolning (HTC) som används för att göra kolmaterial av ursprungsmaterial med hög fukthalt.

Initialt utvärderades kolmaterialens förmåga att adsorbera en mindre grupp nya föroreningar (sulfametoxazol, trimetoprim och koffein). Adsorptionsexperimenten visade att magnetiskt (järndopat) aktiverat biokol hade dubbelt så hög kapacitet jämfört med icke-magnetiskt aktiverat biokol. Adsorptionskapaciteten hos magnetiskt aktiverat biokol var dock fortfarande lägre än för aktivt kol, till exempel 8 mg/g jämfört med 42 mg/g för sulfametoxazol och 40 resp. 56 mg/g för koffein. Den enda studerade parametern som hade en signifikant inverkan på adsorptionen av de utvalda föroreningarna var pH, och de aktiverade biokolen adsorberade företrädesvis neutrala substanser. Denna observation förklaras troligen av interaktioner med ämnenas π-π-bindningar.

Den hydrotermiska regenereringen studerades i två steg, först med bara de enskilda substanserna sulfametoxazol, trimetoprim och koffein i vatten, och sen i närvaro av adsorbent. Hydrotermisk regenerering bröt effektivt ned de undersökta föroreningarna i vatten vid temperaturer över 240 °C, men endast trimetoprim genererade omvandlingsprodukter som kunde identifieras och kvantifieras genom non-targetanalys. Koffein i närvaro av adsorbent bröts inte ned helt vid 280 °C eller ens vid 320 °C, vilket tyder på att de aktiverade biokolen adsorberar och i viss mån skyddar föroreningarna från nedbrytning.

Efter hydrotermisk regenerering ökade de aktiverade biokolens adsorptionskapacitet för sulfametoxazol, medan den försämrades för trimetoprim och koffein. Detta tros höra ihop med att ytegenskaperna hos det aktiverade biokolet förändrats på grund av de adsorberade föroreningarnas reaktioner under den hydrotermiska regenereringen. Över lag översteg regenereringseffektiviteten för de aktiverade biokolen 50 %, och efter tre regenereringscykler steg den så högt som 320 %.

Den forskning som ligger till grund för denna avhandling tyder därför på att (1) aktiverade biokol har potential att ta bort den här typen av nya föroreningar från vatten, och (2) hydrotermisk regenerering skulle kunna bryta ned de flesta av föroreningarna och möjliggöra återanvändning av den använda adsorbenten.

Place, publisher, year, edition, pages
Umeå: Umeå University , 2023. , p. 80
Keywords [en]
Activated biochars, HTC, regeneration, analytical chemistry, adsorption, degradation, nontarget analysis, wastewater, circular economy, emerging contaminants, surface chemistry
National Category
Analytical Chemistry Environmental Sciences
Research subject
Analytical Chemistry; environmental science; Pharmaceutics; analytical material physics; Analytical Pharmaceutical Chemistry
Identifiers
URN: urn:nbn:se:umu:diva-215198ISBN: 9789180701846 (print)ISBN: 9789180701853 (electronic)OAI: oai:DiVA.org:umu-215198DiVA, id: diva2:1804018
Public defence
2023-11-10, Stora hörsalen, KBE303, KBC-huset, Umeå, 09:00 (English)
Opponent
Supervisors
Funder
Bio4EnergyAvailable from: 2023-10-20 Created: 2023-10-11 Last updated: 2023-10-16Bibliographically approved
List of papers
1. Single and competitive adsorption of emerging contaminants using pristine and magnetic activated biochars
Open this publication in new window or tab >>Single and competitive adsorption of emerging contaminants using pristine and magnetic activated biochars
(English)Manuscript (preprint) (Other academic)
National Category
Analytical Chemistry
Identifiers
urn:nbn:se:umu:diva-215196 (URN)
Available from: 2023-10-11 Created: 2023-10-11 Last updated: 2023-10-11
2. Extraction of active pharmaceutical ingredients from simulated spent activated carbonaceous adsorbents
Open this publication in new window or tab >>Extraction of active pharmaceutical ingredients from simulated spent activated carbonaceous adsorbents
2020 (English)In: Environmental Science and Pollution Research, ISSN 0944-1344, E-ISSN 1614-7499, Vol. 27, no 20, p. 25572-25581Article in journal (Refereed) Published
Abstract [en]

Activated carbon (AC) and activated biochar (ABC) are widely used as sorbents for micropollutant removal during water and wastewater treatment. Spent adsorbents can be treated in several ways, e.g., by incineration, disposal in landfills, or reactivation. Regeneration is an attractive and potentially more economically viable alternative to modern post-treatment practices. Current strategies for assessing the performance of regeneration techniques often involve only repeated adsorption and regeneration cycles, and rarely involve direct measurements of micropollutants remaining on the adsorbent after regeneration. However, the use of regenerated adsorbents containing such residual micropollutants could present an environmental risk. In this study, the extraction of eight active pharmaceutical ingredients (APIs) commonly found in treated effluents was evaluated using 10 solvents and sorption onto three different carbon materials. An optimized extraction method was developed involving ultrasonication in 1:1 methanol:dichloromethane with 5% formic acid. This method achieved recoveries of 60 to 99% per API for an API concentration of 2 mu g/g char and 27 to 129% per API for an API concentration of 1 mg/g char. Experiments using a mixture of 82 common APIs revealed that the optimized protocol achieved extraction recoveries above 70% for 29 of these APIs. These results show that the new extraction method could be a useful tool for assessing the regenerative properties of different carbon sorbents.

Place, publisher, year, edition, pages
Springer, 2020
Keywords
Activated biochar, Activated carbon, Regeneration, Pharmaceuticals, API, Adsorption, Micropollutants
National Category
Environmental Sciences
Identifiers
urn:nbn:se:umu:diva-171393 (URN)10.1007/s11356-020-08822-0 (DOI)000529734300005 ()32356053 (PubMedID)2-s2.0-85085074570 (Scopus ID)
Projects
Bio4Energy
Funder
Bio4Energy
Note

Special Issue: SI

Available from: 2020-06-12 Created: 2020-06-12 Last updated: 2024-07-02Bibliographically approved
3. Hydrothermal recycling of carbon absorbents loaded with emerging wastewater contaminants
Open this publication in new window or tab >>Hydrothermal recycling of carbon absorbents loaded with emerging wastewater contaminants
2023 (English)In: Environmental Pollution, ISSN 0269-7491, E-ISSN 1873-6424, Vol. 316, article id 120532Article in journal (Refereed) Published
Abstract [en]

Adsorption using carbon materials is one of the most efficient techniques for removal of emerging contaminants such as pharmaceuticals from wastewater. However, high costs are a major hurdle for their large-scale application in areas currently under economic constraints. While most research focuses on decreasing the adsorbent price by increasing its capacity, treatment costs for exhausted adsorbents and their respective end-of-life scenarios are often neglected. Here, we assessed a novel technique for recycling of exhausted activated biochars based on hydrothermal treatment at temperatures of 160–320 °C. While a treatment temperature of 280 °C was sufficient to fully degrade all 10 evaluated pharmaceuticals in solution, when adsorbed on activated biochars certain compounds were shielded and could not be fully decomposed even at the highest treatment temperature tested. However, the use of engineered biochar doped with Fe-species successfully increased the treatment efficiency, resulting in full degradation of all 10 parent compounds at 320 °C. The proposed recycling technique showed a high carbon retention in biochar with only minor losses, making the treatment a viable candidate for environmentally sound recycling of biochars. Recycled biochars displayed potentially beneficial structural changes ranging from an increased mesoporosity to additional oxygen bearing functional groups, providing synergies for subsequent applications as part of a sequential biochar system.

Place, publisher, year, edition, pages
Elsevier, 2023
Keywords
Activated carbon, Adsorbent recycling, Engineered biochar, Iron doping, Pharmaceuticals
National Category
Environmental Sciences
Identifiers
urn:nbn:se:umu:diva-201190 (URN)10.1016/j.envpol.2022.120532 (DOI)000881796100006 ()36323358 (PubMedID)2-s2.0-85141254154 (Scopus ID)
Funder
EU, Horizon 2020
Available from: 2022-12-06 Created: 2022-12-06 Last updated: 2023-10-11Bibliographically approved
4. Fate of trimethoprim, sulfamethoxazole and caffeine after hydrothermal regeneration of activated carbon
Open this publication in new window or tab >>Fate of trimethoprim, sulfamethoxazole and caffeine after hydrothermal regeneration of activated carbon
2023 (English)In: Journal of Cleaner Production, ISSN 0959-6526, E-ISSN 1879-1786, Vol. 421, article id 139477Article in journal (Refereed) Published
Abstract [en]

Emerging contaminants are found in all parts of our environment. Adsorption of these contaminants by activated carbon in water treatment plants is well-known; however, a problem resides in the handling of the spent adsorbents. As current regenerative technologies are expensive, the adsorbents are often destructed or landfilled. Here, we examine a novel regeneration method for the used adsorbents with subcritical water – i.e., hydrothermal treatment. The degradation of three well-known emerging contaminants – caffeine, trimethoprim and sulfamethoxazole – was studied with regard to processing temperature (160–280 °C), concentration (2 and 20 mg/L), and the impact of adsorbents. In addition to trimethoprim in the mix at 20 mg/L, the other contaminants were entirely degraded at 280 °C. To obtain insight into transformation products formed during hydrothermal regeneration, we performed non-target and targeted analyses with LC-MS-QTOF using two types of columns, C18 and ZIC-HILIC. This approach ensured a wide range of hydrophilicities. Results showed more transformation products for trimethoprim (20) compared to sulfamethoxazole and caffeine (4). To assess the regeneration efficiencies of the activated carbons, we conducted three cycles of regeneration at 280 °C and between 61 and 120 % degradation was achieved. Moreover, only two transformation products were detected and readsorbed on the adsorbent after regeneration. Hydrothermal regeneration efficiently degraded the target emerging contaminants, suggesting a potential approach for enabling alternative, sequential uses for regenerated activated carbon.

Place, publisher, year, edition, pages
Elsevier, 2023
Keywords
Non-target analysis, Adsorption, Emerging contaminants, Hydrochar, Transformation products, HTC
National Category
Analytical Chemistry
Research subject
Analytical Chemistry
Identifiers
urn:nbn:se:umu:diva-215195 (URN)10.1016/j.jclepro.2023.139477 (DOI)001107107300001 ()2-s2.0-85175552036 (Scopus ID)
Funder
Bio4EnergyUmeå University
Note

Originally included in thesis in manuscript form. 

Available from: 2023-10-11 Created: 2023-10-11 Last updated: 2025-04-24Bibliographically approved

Open Access in DiVA

fulltext(3357 kB)638 downloads
File information
File name FULLTEXT01.pdfFile size 3357 kBChecksum SHA-512
cb6b50e4f53f6c21ef952bd7fc6d2f2681babe7047300fd064d7c2b25eec10c27d13a43fd6e85f07219ce9b64e8233b11e7ed2ba480c40803d2eba0527239fe6
Type fulltextMimetype application/pdf
spikblad(363 kB)70 downloads
File information
File name FULLTEXT02.pdfFile size 363 kBChecksum SHA-512
77a826f4eb47945ff6381fd4d118293e724d002bea53ec8b72add64d88d19bcc257d246676fb3d62348dea2907d08d80f9f1006195be8ca83f47096e63b7569c
Type spikbladMimetype application/pdf

Authority records

Oesterle, Pierre

Search in DiVA

By author/editor
Oesterle, Pierre
By organisation
Department of Chemistry
Analytical ChemistryEnvironmental Sciences

Search outside of DiVA

GoogleGoogle Scholar
Total: 714 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

isbn
urn-nbn

Altmetric score

isbn
urn-nbn
Total: 1452 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf