Umeå University's logo

umu.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rewiring of the promoter-enhancer interactome and regulatory landscape in glioblastoma orchestrates gene expression underlying neurogliomal synaptic communication
Umeå University, Faculty of Medicine, Umeå Centre for Molecular Medicine (UCMM). Umeå University, Faculty of Medicine, Wallenberg Centre for Molecular Medicine at Umeå University (WCMM).
Umeå University, Faculty of Medicine, Umeå Centre for Molecular Medicine (UCMM). Umeå University, Faculty of Medicine, Wallenberg Centre for Molecular Medicine at Umeå University (WCMM).
Umeå University, Faculty of Medicine, Umeå Centre for Molecular Medicine (UCMM). Umeå University, Faculty of Medicine, Wallenberg Centre for Molecular Medicine at Umeå University (WCMM).
Umeå University, Faculty of Medicine, Umeå Centre for Molecular Medicine (UCMM). Umeå University, Faculty of Medicine, Wallenberg Centre for Molecular Medicine at Umeå University (WCMM).
Show others and affiliations
2023 (English)In: Nature Communications, E-ISSN 2041-1723, Vol. 14, no 1, article id 6446Article in journal (Refereed) Published
Abstract [en]

Chromatin organization controls transcription by modulating 3D-interactions between enhancers and promoters in the nucleus. Alterations in epigenetic states and 3D-chromatin organization result in gene expression changes contributing to cancer. Here, we map the promoter-enhancer interactome and regulatory landscape of glioblastoma, the most aggressive primary brain tumour. Our data reveals profound rewiring of promoter-enhancer interactions, chromatin accessibility and redistribution of histone marks in glioblastoma. This leads to loss of long-range regulatory interactions and overall activation of promoters, which orchestrate changes in the expression of genes associated to glutamatergic synapses, axon guidance, axonogenesis and chromatin remodelling. SMAD3 and PITX1 emerge as major transcription factors controlling genes related to synapse organization and axon guidance. Inhibition of SMAD3 and neuronal activity stimulation cooperate to promote proliferation of glioblastoma cells in co-culture with glutamatergic neurons, and in mice bearing patient-derived xenografts. Our findings provide mechanistic insight into the regulatory networks that mediate neurogliomal synaptic communication.

Place, publisher, year, edition, pages
Springer Nature, 2023. Vol. 14, no 1, article id 6446
National Category
Biochemistry Molecular Biology
Identifiers
URN: urn:nbn:se:umu:diva-216189DOI: 10.1038/s41467-023-41919-xISI: 001117712600006PubMedID: 37833281Scopus ID: 2-s2.0-85174178290OAI: oai:DiVA.org:umu-216189DiVA, id: diva2:1810780
Available from: 2023-11-09 Created: 2023-11-09 Last updated: 2025-02-20Bibliographically approved
In thesis
1. Long-range gene regulation and 3D organization of the glioblastoma genome
Open this publication in new window or tab >>Long-range gene regulation and 3D organization of the glioblastoma genome
2025 (English)Doctoral thesis, comprehensive summary (Other academic)
Alternative title[sv]
Långdistansgenreglering och 3D-organisation av glioblastomgenomet
Abstract [en]

Alterations in 3D chromatin organization and epigenetic regulation drivecancer progression. Here I use glioblastoma (GB) as a model to understandthe broad impact of epigenetic changes on tumour biology. By mapping the promoter-enhancer interactome and chromatin states in GB, we uncovered extensive rewiring of chromatin architecture that leads to the activation of gene networks associated with synaptic communication, axonogenesis, axon guidance, and chromatin remodelling. Central to these networks are transcription factors (TFs) such as SMAD3 and PITX1, identified as keyplayers in gene regulatory networks (GRNs) mediating neuron-to-gliomasynaptic communication. Moreover, we showed that tumour growth can be affected by modulating the activity of TFs, such as SMAD3, which mediates neuron-to-glioma synapses. These findings highlight how epigenetic changes and reorganization of 3D genome topology enable GB cells to integrate neural signals and translate them into a proliferative response.

Through epigenetic perturbation of novel EGFR (Epidermal Growth Factor Receptor) enhancers, we observed a reduction in GB cell proliferation and invasion, alongside increased sensitivity to the chemotherapeutic agent temozolomide (TMZ). Therefore, targeting specific regulatory regions canalso influence tumour cell behaviour, though to a lower extent than targeting complete GRNs via TF modulation.

Additionally, using Multi-Omics Binary Integration via Lasso Ensembles (MOBILE), a Machine Learning (ML)-based tool, we identified novel GRNs impacted by the rewiring of GB’s epigenetic landscape and critical for GB pathogenesis. Among them, GABA signalling emerged as a previously unrecognized driver of GB tumour progression. 

In summary, this work advances our understanding of how epigenetic regulation and 3D chromatin architecture shape the gene expression landscape of glioblastoma tumours. It paves the way for novel therapeutic strategies targeting chromatin regulators and GRNs to tackle difficult-to-treat cancers, such as glioblastoma.

Abstract [sv]

Förändringar i 3D-kromatinorganisation och epigenetisk reglering driver cancerprogression. Här använder vi glioblastom (GB) som en modell för att förstå den bredare effekten av epigenetiska förändringar på tumörbiologi. Genom att kartlägga promotor-enhancerinteraktomet och kromatintillstånd i GB, upptäckte vi omfattande omkoppling av kromatinarkitektur. Detta leder till aktivering av gennätverk associerade med synaptisk kommunikation, axonogenes, axonvägledning och kromatinstrukturering. Centrala i dessa nätverk är transkriptionsfaktorer (TF) som SMAD3 och PITX1, identifierade som nyckelspelare i genreglerande nätverk (GRN) som förmedlar neuron-till-gliom synaptisk kommunikation. Dessa fynd belyser hur neuronal aktivitet främjar gliomcellproliferation via epigenetiskt drivna förändringar i 3D-genomtopologi. Dessutom visade vi att tumörtillväxt kan påverkas genom att modulera aktiviteten hos TF:er, som SMAD3, som förmedlar neuron-till-gliom synaptisk kommunikation.

Genom epigenetisk störning av nya EGFR (Epidermal Growth Factor Receptor)-enhancers observerade vi en minskning av GB-cellproliferation och invasion, samt ökad känslighet för det kemoterapeutiska medlet temozolomid (TMZ). Därför kan inriktning på specifika regulatoriska regioner också påverka tumörcellsbeteende, även om det sker i mindre utsträckning än genom att rikta in sig på kompletta GRN via TF-modulering.

Dessutom, med hjälp av Multi-Omics binär integration via Lasso Ensembles (MOBILE), ett maskininlärningsbaserat verktyg (ML), identifierade vi nya GRN:er som påverkas av omkopplingen av GB epigenetiska landskap ochsom är kritiska för GB patogenes. Bland dessa framträdde GABA-signaleringsom en tidigare okänd drivkraft för GB-tumörprogression.

Sammanfattningsvis främjar detta arbete vår förståelse av hur epigenetisk reglering och 3D-kromatinarkitektur formar genuttryckslandskapet i glioblastomtumörer. Det banar väg för nya terapeutiska strategier som rikta rsig mot kromatinregulatorer och GRNs för att tackla svårbehandlade cancerformer, såsom glioblastom.

Place, publisher, year, edition, pages
Umeå University, 2025. p. 90
Series
Umeå University medical dissertations, ISSN 0346-6612 ; 2340
National Category
Cell and Molecular Biology
Identifiers
urn:nbn:se:umu:diva-232988 (URN)978-91-8070-588-2 (ISBN)978-91-8070-589-9 (ISBN)
Public defence
2025-01-30, Aula Biologica, Biologihuset, Umeå, 09:00 (English)
Opponent
Supervisors
Available from: 2025-01-09 Created: 2024-12-16 Last updated: 2024-12-17Bibliographically approved

Open Access in DiVA

fulltext(7593 kB)176 downloads
File information
File name FULLTEXT01.pdfFile size 7593 kBChecksum SHA-512
00b51022eb7576eddedf70694ec09dcea7821d0f5103c41d41ce3e97e301650e139850fb1c73ff67784bbd1c02bc7aa060f4a3ac1c47b255d29d514c40cf71d7
Type fulltextMimetype application/pdf

Other links

Publisher's full textPubMedScopus

Authority records

Chakraborty, ChaitaliNissen, ItzelVincent, Craig A.Hägglund, Anna-CarinHörnblad, AndreasRemeseiro, Silvia

Search in DiVA

By author/editor
Chakraborty, ChaitaliNissen, ItzelVincent, Craig A.Hägglund, Anna-CarinHörnblad, AndreasRemeseiro, Silvia
By organisation
Umeå Centre for Molecular Medicine (UCMM)Wallenberg Centre for Molecular Medicine at Umeå University (WCMM)
In the same journal
Nature Communications
BiochemistryMolecular Biology

Search outside of DiVA

GoogleGoogle Scholar
Total: 176 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 844 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf