Umeå University's logo

umu.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Epigenomic perturbation of novel EGFR enhancers reduces the proliferative and invasive capacity of glioblastoma and increases sensitivity to temozolomide
Umeå University, Faculty of Medicine, Umeå Centre for Molecular Medicine (UCMM). Umeå University, Faculty of Medicine, Wallenberg Centre for Molecular Medicine at Umeå University (WCMM).
Umeå University, Faculty of Medicine, Umeå Centre for Molecular Medicine (UCMM). Umeå University, Faculty of Medicine, Wallenberg Centre for Molecular Medicine at Umeå University (WCMM).
Umeå University, Faculty of Medicine, Umeå Centre for Molecular Medicine (UCMM). Umeå University, Faculty of Medicine, Wallenberg Centre for Molecular Medicine at Umeå University (WCMM).
Umeå University, Faculty of Medicine, Umeå Centre for Molecular Medicine (UCMM).ORCID iD: 0000-0003-1283-0784
Show others and affiliations
2023 (English)In: BMC Cancer, E-ISSN 1471-2407, Vol. 23, no 1, article id 945Article in journal (Refereed) Published
Abstract [en]

Background: Glioblastoma (GB) is the most aggressive of all primary brain tumours and due to its highly invasive nature, surgical resection is nearly impossible. Patients typically rely on radiotherapy with concurrent temozolomide (TMZ) treatment and face a median survival of ~ 14 months. Alterations in the Epidermal Growth Factor Receptor gene (EGFR) are common in GB tumours, but therapies targeting EGFR have not shown significant clinical efficacy.

Methods: Here, we investigated the influence of the EGFR regulatory genome on GB cells and identified novel EGFR enhancers located near the GB-associated SNP rs723527. We used CRISPR/Cas9-based approaches to target the EGFR enhancer regions, generating multiple modified GB cell lines, which enabled us to study the functional response to enhancer perturbation.

Results: Epigenomic perturbation of the EGFR regulatory region decreases EGFR expression and reduces the proliferative and invasive capacity of glioblastoma cells, which also undergo a metabolic reprogramming in favour of mitochondrial respiration and present increased apoptosis. Moreover, EGFR enhancer-perturbation increases the sensitivity of GB cells to TMZ, the first-choice chemotherapeutic agent to treat glioblastoma.

Conclusions: Our findings demonstrate how epigenomic perturbation of EGFR enhancers can ameliorate the aggressiveness of glioblastoma cells and enhance the efficacy of TMZ treatment. This study demonstrates how CRISPR/Cas9-based perturbation of enhancers can be used to modulate the expression of key cancer genes, which can help improve the effectiveness of existing cancer treatments and potentially the prognosis of difficult-to-treat cancers such as glioblastoma.

Place, publisher, year, edition, pages
BioMed Central (BMC), 2023. Vol. 23, no 1, article id 945
Keywords [en]
CRISPR/Cas9, EGFR, Enhancer, Epigenomic perturbation, Glioblastoma
National Category
Cancer and Oncology
Identifiers
URN: urn:nbn:se:umu:diva-215716DOI: 10.1186/s12885-023-11418-9ISI: 001082654500001PubMedID: 37803333Scopus ID: 2-s2.0-85173760974OAI: oai:DiVA.org:umu-215716DiVA, id: diva2:1811064
Funder
Umeå UniversitySwedish Research Council, 2019–01960Swedish Cancer Society, 21 1720Knut and Alice Wallenberg FoundationThe Kempe Foundations, SMK-1964.2Available from: 2023-11-10 Created: 2023-11-10 Last updated: 2025-01-27Bibliographically approved
In thesis
1. Long-range gene regulation and 3D organization of the glioblastoma genome
Open this publication in new window or tab >>Long-range gene regulation and 3D organization of the glioblastoma genome
2025 (English)Doctoral thesis, comprehensive summary (Other academic)
Alternative title[sv]
Långdistansgenreglering och 3D-organisation av glioblastomgenomet
Abstract [en]

Alterations in 3D chromatin organization and epigenetic regulation drivecancer progression. Here I use glioblastoma (GB) as a model to understandthe broad impact of epigenetic changes on tumour biology. By mapping the promoter-enhancer interactome and chromatin states in GB, we uncovered extensive rewiring of chromatin architecture that leads to the activation of gene networks associated with synaptic communication, axonogenesis, axon guidance, and chromatin remodelling. Central to these networks are transcription factors (TFs) such as SMAD3 and PITX1, identified as keyplayers in gene regulatory networks (GRNs) mediating neuron-to-gliomasynaptic communication. Moreover, we showed that tumour growth can be affected by modulating the activity of TFs, such as SMAD3, which mediates neuron-to-glioma synapses. These findings highlight how epigenetic changes and reorganization of 3D genome topology enable GB cells to integrate neural signals and translate them into a proliferative response.

Through epigenetic perturbation of novel EGFR (Epidermal Growth Factor Receptor) enhancers, we observed a reduction in GB cell proliferation and invasion, alongside increased sensitivity to the chemotherapeutic agent temozolomide (TMZ). Therefore, targeting specific regulatory regions canalso influence tumour cell behaviour, though to a lower extent than targeting complete GRNs via TF modulation.

Additionally, using Multi-Omics Binary Integration via Lasso Ensembles (MOBILE), a Machine Learning (ML)-based tool, we identified novel GRNs impacted by the rewiring of GB’s epigenetic landscape and critical for GB pathogenesis. Among them, GABA signalling emerged as a previously unrecognized driver of GB tumour progression. 

In summary, this work advances our understanding of how epigenetic regulation and 3D chromatin architecture shape the gene expression landscape of glioblastoma tumours. It paves the way for novel therapeutic strategies targeting chromatin regulators and GRNs to tackle difficult-to-treat cancers, such as glioblastoma.

Abstract [sv]

Förändringar i 3D-kromatinorganisation och epigenetisk reglering driver cancerprogression. Här använder vi glioblastom (GB) som en modell för att förstå den bredare effekten av epigenetiska förändringar på tumörbiologi. Genom att kartlägga promotor-enhancerinteraktomet och kromatintillstånd i GB, upptäckte vi omfattande omkoppling av kromatinarkitektur. Detta leder till aktivering av gennätverk associerade med synaptisk kommunikation, axonogenes, axonvägledning och kromatinstrukturering. Centrala i dessa nätverk är transkriptionsfaktorer (TF) som SMAD3 och PITX1, identifierade som nyckelspelare i genreglerande nätverk (GRN) som förmedlar neuron-till-gliom synaptisk kommunikation. Dessa fynd belyser hur neuronal aktivitet främjar gliomcellproliferation via epigenetiskt drivna förändringar i 3D-genomtopologi. Dessutom visade vi att tumörtillväxt kan påverkas genom att modulera aktiviteten hos TF:er, som SMAD3, som förmedlar neuron-till-gliom synaptisk kommunikation.

Genom epigenetisk störning av nya EGFR (Epidermal Growth Factor Receptor)-enhancers observerade vi en minskning av GB-cellproliferation och invasion, samt ökad känslighet för det kemoterapeutiska medlet temozolomid (TMZ). Därför kan inriktning på specifika regulatoriska regioner också påverka tumörcellsbeteende, även om det sker i mindre utsträckning än genom att rikta in sig på kompletta GRN via TF-modulering.

Dessutom, med hjälp av Multi-Omics binär integration via Lasso Ensembles (MOBILE), ett maskininlärningsbaserat verktyg (ML), identifierade vi nya GRN:er som påverkas av omkopplingen av GB epigenetiska landskap ochsom är kritiska för GB patogenes. Bland dessa framträdde GABA-signaleringsom en tidigare okänd drivkraft för GB-tumörprogression.

Sammanfattningsvis främjar detta arbete vår förståelse av hur epigenetisk reglering och 3D-kromatinarkitektur formar genuttryckslandskapet i glioblastomtumörer. Det banar väg för nya terapeutiska strategier som rikta rsig mot kromatinregulatorer och GRNs för att tackla svårbehandlade cancerformer, såsom glioblastom.

Place, publisher, year, edition, pages
Umeå University, 2025. p. 90
Series
Umeå University medical dissertations, ISSN 0346-6612 ; 2340
National Category
Cell and Molecular Biology
Identifiers
urn:nbn:se:umu:diva-232988 (URN)978-91-8070-588-2 (ISBN)978-91-8070-589-9 (ISBN)
Public defence
2025-01-30, Aula Biologica, Biologihuset, Umeå, 09:00 (English)
Opponent
Supervisors
Available from: 2025-01-09 Created: 2024-12-16 Last updated: 2024-12-17Bibliographically approved
2. Understanding neural-cancer interactions and invasiveness in glioblastoma
Open this publication in new window or tab >>Understanding neural-cancer interactions and invasiveness in glioblastoma
2025 (English)Doctoral thesis, comprehensive summary (Other academic)
Alternative title[sv]
Studera neuro-cancer interaktioner och invasivitet i glioblastom
Abstract [en]

Neural-cancer interactions involve the complex interplay between the nervous system and cancer cells, influencing tumour initiation, progression, and metastasis. In gliomas, these interactions mostly entail the secretion of paracrine growth factors, and electrochemical communication mediated by synapses between neurons and glioma cells. Understanding such interactions is vital for developing new therapeutic strategies against cancer aimed at modulating neuron-to-tumour communication. For this purpose, we have used in vivo mouse models of glioblastoma (GB) and established in vitro assays to study neural-cancer interactions, including the co-culture of cancer cells with either hiPSC-derived glutamatergic neurons or GABAergic interneurons, as well as 3D cultures of tumour spheres and fetal spheroids. The co-culture of hiPSC-derived neurons and cancer cells, including GB cells, was established both as a contact and non-contact assay, allowing to study the relevance of neural-cancer interactions for cancer cell proliferation and migration. While 3D spheroids generally replicate the organization and complexity of tissues effectively, our 3D invasion assay between organ spheroids and tumour spheres enabled us to specifically examine tumour invasion. This is exemplified by GB tumour spheres that exhibit reduced invasiveness of 3D brain spheroids upon repression of EGFR regulatory sequences.

Additionally, the co-culture systems enabled us to profile the transcriptome and chromatin accessibility of GB cells upon neural activity stimulation. GB cells in contact with either glutamatergic neurons or GABAergic interneurons exhibit differential gene expression and chromatin accessibility profiles. This provides new insights into the regulatory networks mediating neuron-to-glioma communication and highlights the relevance of GABAergic signalling in GB pathogenesis. This integrated approach holds promise for furthering our understanding of neural-cancer interactions, offering potential candidates to target neural pathways involved in tumour progression. 

Place, publisher, year, edition, pages
Umeå: Umeå University, 2025. p. 77
Series
Umeå University medical dissertations, ISSN 0346-6612 ; 2341
Keywords
3D culture systems, glioblastoma, cancer neuroscience, neurogliomal synapses, GABAergic interneurons, glutamatergic neurons, synaptic signalling, chromatin profiling, chromatin accessibility, gene expression, gene regulation.
National Category
Cell and Molecular Biology
Identifiers
urn:nbn:se:umu:diva-234626 (URN)978-91-8070-586-8 (ISBN)978-91-8070-587-5 (ISBN)
Public defence
2025-02-21, Aula Biologica, Biologihuset, Umeå, 09:00 (English)
Opponent
Supervisors
Available from: 2025-01-31 Created: 2025-01-27 Last updated: 2025-01-28Bibliographically approved

Open Access in DiVA

fulltext(3677 kB)85 downloads
File information
File name FULLTEXT01.pdfFile size 3677 kBChecksum SHA-512
26aff207de5e1ed59af5faabac69b0c6f54f1996a09b2927c496d593a013b38b048f6d1268f230116b7e88372c73c5141996db78e910578af8989213d32a3839
Type fulltextMimetype application/pdf

Other links

Publisher's full textPubMedScopus

Authority records

Vincent, Craig A.Nissen, ItzelDakhel, SoranHörnblad, AndreasRemeseiro, Silvia

Search in DiVA

By author/editor
Vincent, Craig A.Nissen, ItzelDakhel, SoranHörnblad, AndreasRemeseiro, Silvia
By organisation
Umeå Centre for Molecular Medicine (UCMM)Wallenberg Centre for Molecular Medicine at Umeå University (WCMM)
In the same journal
BMC Cancer
Cancer and Oncology

Search outside of DiVA

GoogleGoogle Scholar
Total: 85 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 831 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf