Umeå University's logo

umu.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
A molecular exploration of sensory responses in c. elegans
Umeå University, Faculty of Medicine, Umeå Centre for Molecular Medicine (UCMM). (Changchun Chen)
2023 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Sensation provides a pivotal ability, allowing animals to survive in complex environments. The cues sensed by animals are represented by external stimuli and internal signals. However, the mechanisms mediating sensations in molecular and cellular level are still not well-studied. In this thesis, by using free-living nematodes C. elegans with relatively simple nerve system, we are trying to get better understandings of molecular mechanisms by which animals sense and interpret external cues and internal signals.

G protein-coupled receptors (GPCRs), as one of the major families of transmembrane proteins, participate in a variety of physiological responses to both external stimuli and internal cues. Previous studies have shown that GPCR signals are broadly involved in many processes in C. elegans, such as olfactory sensing, nociceptive responses, social behavior, pathogen responses, and mating. However, the complexity and diversity of GPCRs pose significant challenges to systematic dissection of their function as well as identification of receptor-ligand pairs which play crucial roles for animals´ sensory behaviors. Interestingly, the genome of C. elegans encodes one of the largest GPCR repertoires among any sequenced organisms, indicating a dramatical expansion and high degree of gene redundancy. To comprehensively dissect GPCR signaling in C. elegans and gain more insights into their roles in sensations, we developed an approach by employing CRISPR/Cas9-based gene editing to mutate closely related GPCRs and neuropeptide genes (internal signals) in a single strain on a genome-wide scale, resulting in disrupting nearly all the GPCR and neuropeptide genes (more than 1800 genes in total) and eliminating high degree of gene redundancy as well. Then using these two genetic libraries, we successfully identified neuropeptide (FLP -1) and cognate receptors (DMSR-4, DMSR-7 and DMSR-8) required for hypoxia-evoked locomotory responses, obtained a set of novel regulators of the pathogen-induced immune response including FMI-1 and DOP-6, and especially identified receptors (SRX-64) in AWA neurons for the volatile odorant pyrazine and redundant receptors (SRX-1, SRX-2 and SRX-3) in AWCOFF neuron for 2,3-pentanedione.

In nature, animals often experience and sense constantly changing gas environments. And human bodies also generate internal gas as gasotransmitters for signal transduction, such as CO, NO and H2S. For the mechanism governing sensory and adaptive responses to different gaseous cues, extensive studies are still needed. Here, taking advantage of the robust locomotory responses to H2S in C. elegans, we delineated the molecular mechanisms of H2S sensation and adaptation. We found that C. elegans exhibited transiently increased locomotory and turning activity as a strategy to escape the noxious H2S. The behavioral responses to H2S were modulated by a complex network of signaling pathways, ranging from cyclic GMP signaling in ciliated sensory neurons, calcineurin, nuclear hormone receptors, to the major starvation regulators such as insulin and TGF-β signaling. Prolonged exposure to H2S robustly evoked H2S detoxification and reprogrammed gene expression, where genes involved in iron homeostasis, including ftn-1 and smf-3, were robustly modified, implying that labile iron levels are affected by H2S. In addition, the roles of labile iron for modulating H2S response were further investigated by using genetic studies and chemical applications. Interestingly, the response to H2S was substantially affected by the ambient O2 levels and their prior experience in low O2 environments, suggesting an intricate interplay between O2 and H2S sensing. The crosstalk is often seen between different experiences and sensations. In addition to the interplay between O2 and H2S sensing, we found hypoxia challenge could induce food leaving behavior in C. elegans. The alteration of food behavior by hypoxia experience was independent of the known mechanisms involved in O2 response, including pathways in acute hypoxia and HIF-1 signaling for chronic hypoxia response. The robust failure of induced food avoidance in egl-3 and egl-21 mutants suggested that neuropeptidergic signaling was required for this response. And future work is needed for comprehensively understanding the roles of neuropeptide signaling in the crosstalk between hypoxia experience and food leaving behavior.

In summary, our studies shed light on the molecular and cellular mechanisms of how animals sense and interpret the signals, allowing them to survive in a complex environment niche. More specifically, 1) we demonstrated the dissection of genetic landscape of GPCR signaling through phenotypic profiling in C. elegans. And as a powerful genetic resource, our libraries can greatly expedite the analyses of GPCR signaling in multiple additional contexts. 2) we provided molecular insights into how C. elegans detects and adapts its response to H2S and modulates behaviors through ambient environment and experience. 

Place, publisher, year, edition, pages
Umeå: Umeå University, 2023. , p. 86
Series
Umeå University medical dissertations, ISSN 0346-6612 ; 2276
Keywords [en]
C. elegans, sensation, CRISPR/Cas9, G protein-coupled receptors, neuropeptides, acute hypoxia, pathogen, chemosensation, hydrogen sulfide, HIF-1, iron
National Category
Neurosciences Genetics and Genomics Biochemistry Molecular Biology
Identifiers
URN: urn:nbn:se:umu:diva-217493ISBN: 978-91-8070-238-6 (print)ISBN: 978-91-8070-239-3 (electronic)OAI: oai:DiVA.org:umu-217493DiVA, id: diva2:1818137
Public defence
2024-01-19, KBE301-Lilla hörsalen, KBC-huset, Umeå, 09:00 (English)
Opponent
Supervisors
Available from: 2023-12-21 Created: 2023-12-08 Last updated: 2025-02-20Bibliographically approved
List of papers
1. Iterative editing of multiple genes using CRISPR/Cas9 in C. elegans
Open this publication in new window or tab >>Iterative editing of multiple genes using CRISPR/Cas9 in C. elegans
2023 (English)In: microPublication Biology, ISSN 2578-9430Article in journal (Refereed) Published
Abstract [en]

Certain sets of genes are derived from gene duplication and share substantial sequence similarity in C. elegans, presenting a significant challenge in determining the specific roles of each gene and their collective impact on cellular processes. Here, we show that a collection of genes can be disrupted in a single animal via multiple rounds of CRISPR/Cas9 mediated genome editing. We found that up to three genes can be simultaneously disrupted in a single editing event with high efficiency. Our approach offers an opportunity to explore the genetic interaction and molecular underpinning of gene clusters with redundant function.

Place, publisher, year, edition, pages
Caltech Library, 2023
National Category
Genetics and Genomics
Identifiers
urn:nbn:se:umu:diva-217488 (URN)10.17912/micropub.biology.000898 (DOI)
Funder
Swedish Research Council, 2018-02216
Available from: 2023-12-05 Created: 2023-12-05 Last updated: 2025-02-07Bibliographically approved
2. Dissecting the genetic landscape of GPCR signaling through phenotypic profiling in  C. elegans
Open this publication in new window or tab >>Dissecting the genetic landscape of GPCR signaling through phenotypic profiling in  C. elegans
Show others...
2023 (English)In: Nature Communications, E-ISSN 2041-1723, Vol. 14, article id 8410Article in journal (Refereed) Published
Abstract [en]

G protein-coupled receptors (GPCRs) mediate responses to various extracellular and intracellular cues. However, the large number of GPCR genes and their substantial functional redundancy make it challenging to systematically dissect GPCR functions in vivo. Here, we employ a CRISPR/Cas9-based approach, disrupting 1654 GPCR-encoding genes in 284 strains and mutating 152 neuropeptide-encoding genes in 38 strains in C. elegans. These two mutant libraries enable effective deorphanization of chemoreceptors, and characterization of receptors for neuropeptides in various cellular processes. Mutating a set of closely related GPCRs in a single strain permits the assignment of functions to GPCRs with functional redundancy. Our analyses identify a neuropeptide that interacts with three receptors in hypoxia-evoked locomotory responses, unveil a collection of regulators in pathogen-induced immune responses, and define receptors for the volatile food-related odorants. These results establish our GPCR and neuropeptide mutant libraries as valuable resources for the C. elegans community to expedite studies of GPCR signaling in multiple contexts.

Place, publisher, year, edition, pages
Springer Nature, 2023
National Category
Neurosciences
Identifiers
urn:nbn:se:umu:diva-217489 (URN)10.1038/s41467-023-44177-z (DOI)001127589400005 ()38110404 (PubMedID)2-s2.0-85180225404 (Scopus ID)
Funder
Swedish Research Council, 2018-02914Swedish Research Council, 2021-06602Swedish Research Council, 2018-02216
Note

Originally included in thesis in manuscript form. 

Available from: 2023-12-05 Created: 2023-12-05 Last updated: 2025-04-24Bibliographically approved
3. Acute avoidance of hydrogen sulfide is modulated by external and internal states in C. elegans
Open this publication in new window or tab >>Acute avoidance of hydrogen sulfide is modulated by external and internal states in C. elegans
(English)Manuscript (preprint) (Other academic)
National Category
Neurosciences
Identifiers
urn:nbn:se:umu:diva-217490 (URN)
Available from: 2023-12-05 Created: 2023-12-05 Last updated: 2023-12-08
4. Hypoxia induces food leaving in C. elegans
Open this publication in new window or tab >>Hypoxia induces food leaving in C. elegans
2023 (English)In: microPublication Biology, ISSN 2578-9430, article id 000776Article in journal (Refereed) Published
Abstract [en]

Hypoxia alters eating behavior in different animals. In C. elegans, hypoxia induces a strong food leaving response. We found that this behavior was independent of the known O 2 response mechanisms including acute O2 sensation and HIF-1 signaling of chronic hypoxia response. Mutating egl-3 and egl-21, encoding the neuropeptide pro-protein convertase and carboxypeptidase, led to defects in hypoxia induced food leaving, suggesting that neuropeptidergic signaling was required for this response. However, we failed to identify any neuropeptide mutants that were severely defective in hypoxia induced food leaving, suggesting that multiple neuropeptides act redundantly to modulate this behavior.

Place, publisher, year, edition, pages
California Institute of Technology, 2023
National Category
Neurosciences Biochemistry Molecular Biology
Identifiers
urn:nbn:se:umu:diva-208120 (URN)10.17912/micropub.biology.000776 (DOI)37033703 (PubMedID)
Available from: 2023-05-09 Created: 2023-05-09 Last updated: 2025-02-20Bibliographically approved

Open Access in DiVA

fulltext(4168 kB)416 downloads
File information
File name FULLTEXT03.pdfFile size 4168 kBChecksum SHA-512
89941909e2853321b8ba14e0548debee4cb13547e74019c4a39117cb27b9d34bbc87f7e0a4f66d641652ed1b1399c093cfc95138f3a1e9983c6d0a0d8ca8bb39
Type fulltextMimetype application/pdf
spikblad(280 kB)76 downloads
File information
File name FULLTEXT02.pdfFile size 280 kBChecksum SHA-512
3af8385e8122c902aee87de8abbab311cb147cc45f34e9ca9de4b05bf3107f2a92902738f29968dc17c75ad1e48005a1cdb931b720037326861d23cd2ca23340
Type spikbladMimetype application/pdf

Authority records

Pu, Longjun

Search in DiVA

By author/editor
Pu, Longjun
By organisation
Umeå Centre for Molecular Medicine (UCMM)
NeurosciencesGenetics and GenomicsBiochemistryMolecular Biology

Search outside of DiVA

GoogleGoogle Scholar
Total: 492 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

isbn
urn-nbn

Altmetric score

isbn
urn-nbn
Total: 824 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf