Umeå University's logo

umu.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Co-hydrothermal carbonization of microalgae and digested sewage sludge: Assessing the impact of mixing ratios on the composition of primary and secondary char
Umeå University, Faculty of Science and Technology, Department of Chemistry. RISE Processum AB, Hörneborgsvägen 10, Örnsköldsvik, Sweden.
Umeå University, Faculty of Science and Technology, Department of Chemistry. Industrial Doctoral School, Umeå University, Umeå, Sweden.ORCID iD: 0000-0003-3607-3888
Umeå University, Faculty of Science and Technology, Department of Chemistry.ORCID iD: 0000-0001-7589-9653
2024 (English)In: Waste Management, ISSN 0956-053X, E-ISSN 1879-2456, Vol. 174, p. 429-438Article in journal (Refereed) Published
Abstract [en]

The role of microalgae cultivation in wastewater treatment and reclamation has been studied extensively, as has the potential utility of the resulting algal biomass. Most methods for processing such biomass generate solid residues that must be properly managed to comply with current sustainable resource utilization requirements. Hydrothermal carbonization (HTC) can be used to process both individual wet feedstocks and mixed feedstocks (i.e., co-HTC). Here, we investigate co-HTC using microalgae and digested sewage sludge as feedstocks. The objectives were to (i) study the material's partitioning into solid and liquid products, and (ii) characterize the products’ physicochemical properties. Co-HTC experiments were conducted at 180–250°C using mixed microalgae/sewage sludge feedstocks with the proportion of sewage sludge ranging from 0 to 100 %. Analyses of the hydrochar composition and the formation and composition of secondary char revealed that the content of carbonized material in the product decreased as the proportion of sewage sludge in the feedstock increased under fixed carbonization conditions. The properties of the hydrochars and the partitioning of material between the liquid phase and the hydrochar correlated linearly with the proportion of microalgae in mixed feedstocks, indicating that adding sewage sludge to microalgae had weak or non-existent synergistic effects on co-HTC outcomes. However, the proportion of sewage sludge in the feedstock did affect the secondary char. For example, adding sewage sludge reduced the abundance of carboxylic acids and ketones as well as the concentrations of higher molecular weight cholesterols. Such changes may alter the viable applications of the hydrochar.

Place, publisher, year, edition, pages
Elsevier, 2024. Vol. 174, p. 429-438
Keywords [en]
Chemical composition, Co-HTC, Hydrochar, Mixed feedstocks, Thermogravimetric analysis, Wastewater treatment by-products
National Category
Other Chemistry Topics
Identifiers
URN: urn:nbn:se:umu:diva-218868DOI: 10.1016/j.wasman.2023.11.039ISI: 001137954300001PubMedID: 38104415Scopus ID: 2-s2.0-85180417079OAI: oai:DiVA.org:umu-218868DiVA, id: diva2:1824331
Funder
Bio4EnergyAvailable from: 2024-01-05 Created: 2024-01-05 Last updated: 2025-04-24Bibliographically approved
In thesis
1. Hydrothermal carbonization of digested sewage sludge and microalgae biomass: phosphorus and energy recovery
Open this publication in new window or tab >>Hydrothermal carbonization of digested sewage sludge and microalgae biomass: phosphorus and energy recovery
2024 (English)Doctoral thesis, comprehensive summary (Other academic)
Alternative title[sv]
Hydrotermal karbonisering av rötat avloppsslam och mikroalgerbiomassa : fosfor och energiåtervinning
Abstract [en]

Sewage sludge and microalgae biomass are by-products of wastewater treatment, requiring careful management to avoid environmental and health risks. Both sewage sludge and microalgae have high moisture content, making thermochemical conversion challenging and energy intensive. Hydrothermal carbonization (HTC) presents a promising solution for converting these wet feedstocks into valuable resources. The thesis aimed to study HTC of sewage sludge and microalgae biomass, individually and combined (i.e., co-HTC). It focused on process parameters, mixing ratios, product characteristics, primary and secondary char formation, and resource recovery, with especial emphasis was on phosphorus and energy recovery as potential applications of the resulting hydrochars. Both the HTC and co-HTC experiments were conducted at 180, 215 and 250°C for 2 h (Papers I–IV).

Paper I investigated co-HTC by combining microalgae and sewage sludge in various ratios, from 0 to 100% of sewage sludge. Results showed that higher sewage sludge proportions and carbonization temperatures led to lower degradation and carbonization rates. The addition of sewage sludge influenced secondary char formation and composition, reducing carboxylic acid and ketones while increasing higher molecular weight cholesterols. Moreover, sewage sludge hydrochars contained larger phosphorus quantities.

In acid-leaching experiments (Papers II and III) using sewage sludge, phosphorus-extraction efficiencies surpassed 75%. Complete phosphorus recovery (100%) was achieved only with oxalate extraction at pH=1. Organic acids, utilized at a lower concentration (0.25 M) compared to mineral acids (2.5 M), acted as both acids and chelating agents, facilitating phosphorus recovery. Regardless of acid type, leaching from hydrochar transferred not only phosphorus but metals and heavy metals into the P-rich leachate, requiring post-treatment purification. 

Combustion studies of microalgae and sewage sludge co-hydrochar, and phosphorus extracted hydrochar from sewage sludge as solid fuels showed notable improvements in physicochemical and energy-related properties. Acid treatment improved carbon content, heating values, and fuel ratio, while significantly reducing ash content compared to untreated hydrochars (Paper IV). These properties decreased in the co-hydrochars with higher sewage sludge proportions due to differing carbon, volatile matter, and ash content between microalgae and sewage sludge. Thermodynamic equilibrium calculations predicted liquid slag and solid phase formation at combustion temperatures up to 1200°C. Experimental comparison with combustion ashes, analyzed through DRIFTS, SEM-EDS, and XRD, validated simulated compounds including Fe2O3, SiO2, feldspar, whitlockite, CaCO3, and CaSO4 in Paper IV. Notably, CaCO3 presence in ashes was confirmed by XRD but not reflected in calculation results. Microalgae hydrochar ashes were primarily composed of calcium phosphates and Fe2O3, visually confirmed by EDS mapping due to XRD limitations.

The result of this thesis suggests that the HTC process offers a pre-treatment means of improving hydrophobicity and significantly reducing feedstock volumes. Additionally, the resource-recovery approach studied in this thesis, which uses sewage sludge and microalgae-derived hydrochars generated in wastewater treatment plants, is a step towards being an efficient management strategy for by-products generated by these plants.

Abstract [sv]

Avloppsslam och biomassa från mikroalger är biprodukter från rening av avloppsvatten, vilket kräver noggrann hantering för att undvika miljö- och hälsorisker. Både avloppsslam och mikroalger har hög fukthalt, vilket gör den termokemiska omvandlingen utmanande och energikrävande. Hydrotermisk karbonisering (HTC) presenterar en lovande lösning för att omvandla dessa våta råvaror till värdefulla resurser. Avhandlingen syftade till att studera HTC av avloppsslam och biomassa från mikroalger, individuellt och kombinerat (d.v.s. co-HTC). Den fokuserade på processparametrar, blandningsförhållanden, produktegenskaper, primär och sekundär kolbildning och resursåtervinning, med särskild tonvikt på fosfor och energiåtervinning som potentiella tillämpningar av de resulterande kolvätena. Både HTC- och co-HTC-experimenten utfördes vid 180, 215 och 250 °C under 2 timmar (Paper I–IV).

Paper I undersökte co-HTC genom att kombinera mikroalger och avloppsslam i olika förhållanden, från 0 till 100 % av avloppsslam. Resultaten visade att högre andelar av avloppsslam och förkolningstemperaturer ledde till lägre nedbrytnings- och förkolningshastigheter. Tillsatsen av avloppsslam påverkade sekundär kolbildning och sammansättning, vilket minskade karboxylsyra och ketoner samtidigt som kolesteroler med högre molekylvikt ökade. Dessutom innehöll kolväten i avloppsslam större mängder fosfor.

I syralakningsexperiment (Paper II och III) med avloppsslam översteg fosforutvinningseffektiviteten 75%. Fullständig fosforåtervinning (100%) uppnåddes endast med oxalatextraktion vid pH=1. Organiska syror, som användes i en lägre koncentration (0.25 M) jämfört med mineralsyror (2.5 M), fungerade som både syror och kelatbildare, vilket underlättade fosforåtervinningen. Oavsett syratyp överförde utlakning från kolväte inte bara fosfor utan metaller och tungmetaller till det P-rika lakvattnet, vilket krävde efterbehandlingsrening.

Förbränningsstudier av mikroalger och avloppsslam co-hydrochar, och fosfor extraherad hydrochar från avloppsslam som fasta bränslen visade påtagliga förbättringar i fysikalisk-kemiska och energirelaterade egenskaper. Syrabehandling förbättrade kolhalten, värmevärdena och bränsleförhållandet, samtidigt som askhalten minskade avsevärt jämfört med obehandlade kolväten (Paper IV). Dessa egenskaper minskade i samkolväten med högre andel avloppsslam på grund av olika innehåll av kol, flyktiga ämnen och aska mellan mikroalger och avloppsslam. Termodynamiska jämviktsberäkningar förutspådde bildning av flytande slagg och fast fas vid förbränningstemperaturer upp till 1200°C. Experimentell jämförelse med förbränningsaska, analyserad genom DRIFTS, SEM-EDS och XRD, validerade simulerade föreningar inklusive Fe2O3, SiO2, fältspat, whitlockit, CaCO3 och CaSO4 i Paper IV. Noterbart bekräftades CaCO3-närvaro i aska genom XRD men återspeglades inte i beräkningsresultat. Mikroalger hydrochar aska bestod främst av kalciumfosfater och Fe2O3, visuellt bekräftat av EDS-kartläggning på grund av XRD-begränsningar.

Resultatet av denna avhandling tyder på att HTC-processen erbjuder ett förbehandlingsmedel för att förbättra hydrofobiciteten och avsevärt minska råvaruvolymerna. Dessutom är den resursåtervinningsmetod som studeras i denna avhandling, som använder avloppsslam och mikroalger som genereras i avloppsreningsverk, ett steg mot att bli en effektiv hanteringsstrategi för biprodukter som genereras av dessa anläggningar.

Place, publisher, year, edition, pages
Umeå: Umeå University, 2024. p. 84
Keywords
HTC, hydrochar, phosphorus release, solid fuel, acid treatment, thermodynamic calculations, primary char, secondary char, hydrochar formation
National Category
Chemical Engineering Inorganic Chemistry Energy Systems
Identifiers
urn:nbn:se:umu:diva-223968 (URN)9789180704052 (ISBN)9789180704069 (ISBN)
Public defence
2024-05-31, Stora hörsalen (KB.E3.03), KBC-huset, Umeå, 09:00 (English)
Opponent
Supervisors
Available from: 2024-05-08 Created: 2024-05-03 Last updated: 2025-02-18Bibliographically approved

Open Access in DiVA

fulltext(2306 kB)480 downloads
File information
File name FULLTEXT01.pdfFile size 2306 kBChecksum SHA-512
b09026bb55355871e4e2583a4e8adb275ee06afa800b27cb1ec46134447b72931ce8d8f996626fad75fa38604bc43e39938cd169a91ef06bd2da758baa153762
Type fulltextMimetype application/pdf

Other links

Publisher's full textPubMedScopus

Authority records

Benavente, VeronicaPérez, CarlaJansson, Stina

Search in DiVA

By author/editor
Benavente, VeronicaPérez, CarlaJansson, Stina
By organisation
Department of Chemistry
In the same journal
Waste Management
Other Chemistry Topics

Search outside of DiVA

GoogleGoogle Scholar
Total: 480 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 564 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf