Umeå University's logo

umu.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
The Abel-Ruffini Theorem: The insolvability of the general quintic equation by radicals
Umeå University, Faculty of Science and Technology, Department of Mathematics and Mathematical Statistics.
2024 (English)Independent thesis Basic level (degree of Bachelor), 10 credits / 15 HE creditsStudent thesis
Abstract [en]

This thesis explores the topic of Galois theory at a relatively introductory level with the goal of proving the Abel Ruffini theorem. In the first part algebraic structures are considered: groups, ring, fields, etc. Following this, polynomial rings are introduced and the attention is then turned to finite field-extensions. In the final section of the main text solvable extensions are studied and the Abel-Ruffini theorem is proved. The discussion section gives a brief overview of analytic methods of solving polynomial-equations.

Abstract [sv]

Den här uppsatsen utforskar Galoisteorin för att bevisa Abel-Ruffinis sats. I den första delen är algebraiska strukturer i fokus: Grupper, ringar, kroppar, etc. Efter detta intrduceras polynom-ringar, och fokuset vänds sedan till ändliga kropps-utvidgningar. I den sista delen av huvudtexten så studeras lösbara förvidgningar och Abel-Ruffini's sats bevisas. Diskusionen ger en översikt över analytiska lösningar av polynom-ekvationer.

Place, publisher, year, edition, pages
2024.
National Category
Algebra and Logic Mathematics
Identifiers
URN: urn:nbn:se:umu:diva-222489OAI: oai:DiVA.org:umu-222489DiVA, id: diva2:1845608
Supervisors
Examiners
Available from: 2024-03-27 Created: 2024-03-19 Last updated: 2024-03-27Bibliographically approved

Open Access in DiVA

fulltext(488 kB)844 downloads
File information
File name FULLTEXT01.pdfFile size 488 kBChecksum SHA-512
0dbc28ee47a88ac330c9b3bf09f1718b5a9db255312cf4af52b276be4a1edf2fffbef501a33afcc43812f6c145728cd0aae0b023944e2d65347698d8c6fb72d7
Type fulltextMimetype application/pdf

By organisation
Department of Mathematics and Mathematical Statistics
Algebra and LogicMathematics

Search outside of DiVA

GoogleGoogle Scholar
Total: 852 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 384 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf