Umeå University's logo

umu.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
The Riemann Mapping Theorem
Umeå University, Faculty of Science and Technology, Department of Mathematics and Mathematical Statistics.
2024 (English)Independent thesis Basic level (degree of Bachelor), 10 credits / 15 HE creditsStudent thesis
Abstract [en]

The Riemann Mapping Theorem is presented and proven in this essay. The theorem, first published 1851, is essential for the study of holomorphic functions on simply connected, proper subsets of C.

Abstract [sv]

Uppsatsen presenterar och formulerar Riemanns avbildningssats. Satsen från 1851 är ett essentiellt resultat för studiet av holomorfa funktioner på enkelt sammanhängande, äkta delmängder av C.

Place, publisher, year, edition, pages
2024.
Keywords [en]
Complex Analysis, Riemann, Riemann Mapping, Montel's Theorem
National Category
Mathematical Analysis Mathematics
Identifiers
URN: urn:nbn:se:umu:diva-225839OAI: oai:DiVA.org:umu-225839DiVA, id: diva2:1867059
Supervisors
Examiners
Available from: 2024-06-10 Created: 2024-06-10 Last updated: 2024-06-10Bibliographically approved

Open Access in DiVA

fulltext(3035 kB)784 downloads
File information
File name FULLTEXT01.pdfFile size 3035 kBChecksum SHA-512
27f711ce6bac06b5894aa2e30e043a89860b19c8675d96b2f7db07a319cd7833015e8c1883b96afc2971bfad0fad06682df9985cca36edc3e712a29cfdba34d3
Type fulltextMimetype application/pdf

By organisation
Department of Mathematics and Mathematical Statistics
Mathematical AnalysisMathematics

Search outside of DiVA

GoogleGoogle Scholar
Total: 784 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 410 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf