Umeå University's logo

umu.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Fine-tuned convolutional neural networks for improved glaucoma prediction
Umeå University, Faculty of Science and Technology, Department of Physics.
2024 (English)Independent thesis Advanced level (professional degree), 20 credits / 30 HE creditsStudent thesis
Abstract [en]

Early detection is crucial for effectively treating glaucoma, a leading cause of irreversible blindness. Diagnosing glaucoma can be challenging due to its subtle early symptoms. This study aims to enhance glaucoma prediction by fine-tuning pre-trained convolutional neural networks. Several networks were re-trained and tested on publicly available retinal image datasets. Additionally, the models were evaluated on fundus images from patients at Region Västernorrland (RVN). The methodology involved exploring how to effectively process and prepare patient data for prediction purposes. The results showed that a majority voting ensemble of the fine-tuned models produced the highest performance, achieving an accuracy of approximately 0.94, with a specificity and sensitivity of 0.97 and 0.90 respectively. The ensemble also identified 0.90 glaucomatous images from RVN correctly. In terms of specificity and sensitivity, all models outperformed the results of ophthalmologist specialists described in a previous study. The findings suggest the effectiveness of transfer learning in enhancing the diagnostic accuracy of glaucoma. It also underscores the importance of proper storage and preparation of medical data for developing predicitive machine learning models.

Abstract [sv]

Glaukom, mer känt som grön starr, är en av de vanligast förekommande ögonsjukdomarna som orsakar blindhet. Det är viktigt att diagnostisera glaukom tidigt i sjukdomsförloppet för att genom behandling, sakta ner eller stoppa ytterligare synförlust. Att diagnostisera glaukom kan vara utmanande, eftersom det vanligtvis inte visar några tidiga symtom. Artificiell intelligens (AI), eller mer specifikt maskininlärning (ML), kan hjälpa läkare att ställa rätt diagnos om det används som ett beslutsstöd. Faltande neurala nätverk (convolutional neural network, CNN) kan lära sig att känna igen mönster i bilder, för att därigenom klassificera bilder till olika kategorier.

Ett sätt att diagnostisera glaukom är att studera näthinnan och synnerven i ögats bakre del, som kallas ögonbotten. I denna studie finjusterades redan tränade CNN:s för att prediktera glaukom utifrån ögonbottenbilder. Detta uppnåddes genom att träna om modellerna på publikt tillgängliga ögonbottenbilder. Målet var att jämföra nätverkens noggrannhet på en delmängd av bilderna, samt att evaluera dem på ögonbottenbilder från sjukhus i Region Västernorrland (RVN). För att uppnå detta ingick det även i metodiken att utforska begränsningarna och möjligheterna med hur patientdata får användas, samt att undersöka hur datat bör lagras och tillrättaläggas för att möjliggöra utvecklingen av prediktionsmodeller. Syftet med studien var att öka noggrannheten vid diagnostisering av glaukom.

Resultaten visade att en ensemble baserad på majoritetsröstning av alla modeller gav den bästa noggrannheten, ungefär 0.94. Sensitiviteten och specificiteten var 0.90, respektive 0.97. Vidare klassificerades 90% av ögonbottenbilderna från RVN korrekt. Resultaten tyder på att maskininlärning är effektivt för att förbättra den diagnostiska noggrannheten för glaukom. Det understryker också vikten av strategisk lagring och förberedelse av medicinska data för att utveckla prediktiva maskininlärningsmodeller i framtiden.

Place, publisher, year, edition, pages
2024. , p. 33
Keywords [en]
Glaucoma, Prediction, CNN, Transfer Learning, Diagnostics
National Category
Medical Engineering
Identifiers
URN: urn:nbn:se:umu:diva-226194OAI: oai:DiVA.org:umu-226194DiVA, id: diva2:1869901
External cooperation
Region Västernorrland Medicinsk teknik; Region Västerbotten Medicinsk teknik, FoU
Subject / course
Examensarbete i teknisk fysik
Educational program
Master of Science Programme in Engineering Physics
Presentation
2024-06-05, 11:00 (Swedish)
Supervisors
Examiners
Available from: 2024-06-14 Created: 2024-06-13 Last updated: 2024-06-14Bibliographically approved

Open Access in DiVA

fulltext(2719 kB)172 downloads
File information
File name FULLTEXT01.pdfFile size 2719 kBChecksum SHA-512
ef3f39a8f6868b9e37414d48f9da7dec7f334adba64260acbc03a3fefa53b7f97e8a357cecd3b71ad1f2336984c2d6c94269b41f7a1762926733b1d3f6b3bb82
Type fulltextMimetype application/pdf

By organisation
Department of Physics
Medical Engineering

Search outside of DiVA

GoogleGoogle Scholar
Total: 172 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 545 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf