Umeå University's logo

umu.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Classifying laser solders: Machine learning in production
Umeå University, Faculty of Science and Technology, Department of Mathematics and Mathematical Statistics.
Umeå University, Faculty of Science and Technology, Department of Mathematics and Mathematical Statistics.
2024 (English)Independent thesis Advanced level (professional degree), 20 credits / 30 HE creditsStudent thesisAlternative title
Klassificering av laserlödning : Maskininlärning i produktion (Swedish)
Abstract [en]

Advancements in machine learning and artificial intelligence has created opportunities for vast improvements in the manufacturing sector. This study was conducted at a world-leading manufacturing company with the goal to assist in the development of a framework for application of machine learning in the company's operational workflow. Specifically, with the aim to investigate the potential benefits and pitfalls when utilizing machine learning to supervise a laser soldering process.

This thesis analyzes and designs all the required steps for a machine learning approach for this specific manufacturing process. This included (1) image capturing, (2) preprocessing, (3) modelling, (4) testing and (5) functional tool. The thesis also discusses strategies for dealing with limitations posed by the industrial environment, for example unattainable process data and imbalanced datasets.

In conclusion, it became evident that for a machine learning approach in an industrial setting it is crucial to understand the underlying process, the importance of a reliable data collection setup as well as the necessity of a proper framework. The thesis also proposes a sliding window approach as a preprocessing method for similar image classification tasks.

Abstract [sv]

Framsteg inom maskininlärning och artificiell intelligens har banat vägen för omfattande förbättringar inom tillverkningsindustrin. Denna studie genomfördes på ett världsledande tillverkningsföretag för att stödja utvecklingen av ett ramverk kring hur maskininlärning kan appliceras inom deras operativa flöde. Syftet var specifikt att undersöka de potentiella fördelarna och fallgroparna med att utnyttja maskininlärning för övervakning av en laserlödningsprocess. 

Denna rapport undersökte och konstruerade alla nödvändiga steg för hur maskininlärning kan appliceras på denna specifika produktionsprocess. Detta inkluderar (1) bildtagning, (2) dataförbehandling, (3) modellering, (4) testning och (5) slutgiltig implementation. Rapporten diskuterar även strategier för att hantera de begränsningar som uppstod på grund av den industriella miljön, till exempel otillgänglig processdata och obalanserad data. 

Avslutningsvis, så var det uppenbart att förståelsen för den underliggande processen, vikten av en tillförlitlig anordning för datainsamlig samt behovet för ett tillbörligt ramverk för maskininlärning inom företaget är avgörande. Rapporten förslår även en "sliding window" ansats som preprocessering metod för liknade cases inom bildklassificering.  

Place, publisher, year, edition, pages
2024. , p. 26
Keywords [en]
machine learning, image classification, laser solder, manufacturing, computer vision
Keywords [sv]
maskininlärning, bildklassificering, laserlödning, tillverkning, datorseende
National Category
Mathematics
Identifiers
URN: urn:nbn:se:umu:diva-226585OAI: oai:DiVA.org:umu-226585DiVA, id: diva2:1872913
External cooperation
Konfidentiell information
Educational program
Master of Science in Engineering and Management
Supervisors
Examiners
Available from: 2024-06-20 Created: 2024-06-18 Last updated: 2024-06-20Bibliographically approved

Open Access in DiVA

fulltext(4563 kB)198 downloads
File information
File name FULLTEXT01.pdfFile size 4563 kBChecksum SHA-512
21047440a053edeb0c6d1b9929d832518b4038fa8c735f94fa1d8c059445218ea51325b7816cd92596415c76d9a7907c1720ef90c1fc56a544078fda05704065
Type fulltextMimetype application/pdf

Search in DiVA

By author/editor
Rhönnstad, JonasRojroung, Kevalin
By organisation
Department of Mathematics and Mathematical Statistics
Mathematics

Search outside of DiVA

GoogleGoogle Scholar
Total: 198 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 533 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf