Umeå University's logo

umu.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
An optimal transport approach to Monge–Ampère equations on Compact Hessian Manifolds
Chalmers University of Technology, Gothenburg, Sweden.ORCID iD: 0000-0002-1984-4778
Chalmers University of Technology, Gothenburg, Sweden.
2018 (English)In: Journal of Geometric Analysis, ISSN 1050-6926, E-ISSN 1559-002X, Vol. 29, no 3, p. 1953-1990Article in journal (Refereed) Published
Abstract [en]

In this paper we consider Monge–Ampère equations on compact Hessian manifolds, or equivalently Monge–Ampère equations on certain unbounded convex domains in Euclidean space, with a periodicity constraint given by the action of an affine group. In the case where the affine group action is volume preserving, i.e., when the manifold is special, the solvability of the corresponding Monge–Ampère equation was first established by Cheng and Yau using the continuity method. In the general case we set up a variational framework involving certain dual manifolds and a generalization of the classical Legendre transform. We give existence and uniqueness results and elaborate on connections to optimal transport and quasi-periodic tilings of convex domains. Similar content

Place, publisher, year, edition, pages
Springer Nature, 2018. Vol. 29, no 3, p. 1953-1990
Keywords [en]
Affine geometry, Hessian manifolds, Monge–Ampère equations, Optimal transport
National Category
Geometry
Identifiers
URN: urn:nbn:se:umu:diva-229602DOI: 10.1007/s12220-018-0068-5ISI: 000472534000003Scopus ID: 2-s2.0-85050935044OAI: oai:DiVA.org:umu-229602DiVA, id: diva2:1897800
Available from: 2024-09-16 Created: 2024-09-16 Last updated: 2024-09-16Bibliographically approved

Open Access in DiVA

fulltext(646 kB)34 downloads
File information
File name FULLTEXT01.pdfFile size 646 kBChecksum SHA-512
dba4557aed3cf0253b339f56d030d2d73e50ef9c915c4abdfba01669f61487508f37f8f1ddc1d6abff3a11efb5e63601f416621301bff2283985b28c1c60d4dc
Type fulltextMimetype application/pdf

Other links

Publisher's full textScopus

Authority records

Hultgren, Jakob

Search in DiVA

By author/editor
Hultgren, Jakob
In the same journal
Journal of Geometric Analysis
Geometry

Search outside of DiVA

GoogleGoogle Scholar
Total: 34 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 130 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf