Umeå University's logo

umu.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Machine learning for efficient and robust causal inference and prediction
Umeå University, Faculty of Social Sciences, Umeå School of Business and Economics (USBE), Statistics.ORCID iD: 0000-0003-0633-0177
2024 (English)Doctoral thesis, comprehensive summary (Other academic)Alternative title
Maskininlärning för effektiv och robust kausal inferens och prediktion (Swedish)
Abstract [en]

This thesis makes contributions within the area of causal inference, domain adaptation, and studies of health inequalities. The common theme is using asymptotic statistics, where estimators and predictors are shown to be asymptotically unbiased, normally distributed, and reach the asymptotic efficiency bound. Furthermore, due to the robustness of the solutions, the usage of flexible machine learning models like neural networks is justified.

The first work studies the necessary growth rate for convolutional neural network architectures, where asymptotically efficient estimation of causal effect estimators is aimed at, and convolutional neural networks are used to fit nuisance models. The proposed method is also applied to Swedish registry data in order to study the effects of early retirement on health outcomes.

The second article proposes an asymptotically efficient estimator for a novel causal parameter. The parameter of interest is the effect of an intervention on a counterfactual version of the concentration index, which is an index that represents socioeconomic-related health inequality. The real data application of this paper is the study of the effect of education on different health-related inequalities in a cohort of Swedes.

The third paper solves a problem in the field of domain adaptation in machine learning, where the training set is observed but it is not possible to assume that test and training sets follow the same distribution. A weaker assumption is instead considered, referred to as a generalized label shift. This paper proposes a robust and asymptotically efficient predictor under the generalized label shift assumption.

The last article is a vignette on the software developed to perform the analysis in the first paper. It is possible to utilize the software in a broader manner than what is described in the first paper. Several examples and more practical details are presented in this article in order to demonstrate how neural networks can be used in order to fit nuisance functions when the average treatment effect or the average treatment effect on the treated is the parameter of interest.

Abstract [sv]

Denna avhandling bidrar till området kausal inferens, domänanpassning och studier om ojämlikhet i hälsa. Det gemensamma motivet är att använda asymptotisk statistik, där estimatorer och prediktorer visas vara asymptotiskt väntevärdesriktiga, normalfördelade och nå den asymptotiska effektivitetsgränsen. Dessutom, på grund av robustheten hos lösningar, är användningen av flexibla maskininlärningsmodeller, så som neurala nätverk, motiverad.

Det första arbetet studerar den nödvändiga tillväxthastigheten för konvolutionella neurala nätverks arkitekturer, där asymptotiskt effektiva skattningar av kausala effekter är syftet och konvolutionella neurala nätverk används för att skatta störmodeller. Den föreslagna metoden tillämpas även på svenska registerdata för att studera effekterna av förtidspension på hälsoutfall.

Den andra artikeln föreslår en asymptotiskt effektiv estimator för en ny kausal parameter. Parametern av intresse är effekten av en intervention på en kontrafaktisk version av koncentrationsindexet, vilket är ett index som beskriver socioekonomisk ojämlikhet i hälsa. Datatillämpningen i denna uppsats studerar effekten av utbildning på olika hälsorelaterade ojämlikheter i en kohort svenskar.

Den tredje uppsatsen löser ett problem inom domänanpassning i maskininlärning, där träningsdata observeras men det är inte möjligt att anta att test- och träningsdata följer samma fördelning. Ett svagare antagande övervägs istället, kallad ett generaliserat etikettskifte. Denna artikel föreslår en robust och asymptotiskt effektiv prediktor under det generaliserade etikettskiftes antagandet.

Den sista artikeln är en vinjett som klargör programvaran som utvecklats för att utföra analysen i den första uppsatsen. Det är möjligt att använda programvaran på ett bredare sätt än vad som beskrivs i den första artikeln. Olika exempel och fler praktiska detaljer presenteras i denna artikel för att visa hur neurala nätverk kan användas för att skatta störfunktioner när syftet är att estimera den genomsnittliga behandlingseffekten i en population eller delpopulation av de behandlade.

Place, publisher, year, edition, pages
Umeå: Umeå University, 2024. , p. 20
Series
Statistical studies, ISSN 1100-8989 ; 59
Keywords [en]
Causal inference, Convolutional neural network, Concentration index, Generalized label shift, Machine learning, Asymptotic efficiency
National Category
Probability Theory and Statistics
Research subject
Statistics
Identifiers
URN: urn:nbn:se:umu:diva-230215ISBN: 978-91-8070-475-5 (print)ISBN: 978-91-8070-476-2 (electronic)OAI: oai:DiVA.org:umu-230215DiVA, id: diva2:1902456
Public defence
2024-10-25, Hörsal SAM.A.280, Samhällsvetarhuset, Umeå, 09:30 (English)
Opponent
Supervisors
Funder
Marianne and Marcus Wallenberg FoundationAvailable from: 2024-10-04 Created: 2024-10-01 Last updated: 2024-10-08Bibliographically approved
List of papers
1. Convolutional neural networks for valid and efficient causal inference
Open this publication in new window or tab >>Convolutional neural networks for valid and efficient causal inference
2024 (English)In: Journal of Computational And Graphical Statistics, ISSN 1061-8600, E-ISSN 1537-2715, Vol. 33, no 2, p. 714-723Article in journal (Refereed) Published
Abstract [en]

Convolutional neural networks (CNN) have been successful in machine learning applications including image classification. When it comes to images, their success relies on their ability to consider the space invariant local features in the data. Here, we consider the use of CNN to fit nuisance models in semiparametric estimation of a one dimensional causal parameter: the average causal effect of a binary treatment. In this setting, nuisance models are functions of pre-treatment covariates that need to be controlled for. In an application where we want to estimate the effect of early retirement on a health outcome, we propose to use CNN to control for time-structured covariates. Thus, CNN is used when fitting nuisance models explaining the treatment assignment and the outcome. These fits are then combined into an augmented inverse probability weighting estimator yielding efficient and uniformly valid inference. Theoretically, we contribute by providing rates of convergence for CNN equipped with the rectified linear unit activation function and compare it to an existing result for feedforward neural networks. We also show when those rates guarantee uniformly valid inference for the proposed estimator. A Monte Carlo study is provided where the performance of the proposed estimator is evaluated and compared with other strategies. Finally, we give results on a study of the effect of early retirement on later hospitalization using a database covering the whole Swedish population.

Place, publisher, year, edition, pages
Taylor & Francis, 2024
Keywords
Average causal effect, augmented inverse probability weighting, early retirement, rate double robustness, post-machine learning inference
National Category
Probability Theory and Statistics
Identifiers
urn:nbn:se:umu:diva-199235 (URN)10.1080/10618600.2023.2257247 (DOI)001119527600001 ()2-s2.0-85174611652 (Scopus ID)
Funder
Marianne and Marcus Wallenberg FoundationSwedish Research Council
Note

Orinally included in thesis in manuscript form. 

Available from: 2022-09-08 Created: 2022-09-08 Last updated: 2024-10-01Bibliographically approved
2. Causal inference targeting a concentration index for studies of health inequalities
Open this publication in new window or tab >>Causal inference targeting a concentration index for studies of health inequalities
(English)Manuscript (preprint) (Other academic)
National Category
Probability Theory and Statistics
Identifiers
urn:nbn:se:umu:diva-230169 (URN)
Available from: 2024-09-30 Created: 2024-09-30 Last updated: 2024-10-01
3. Unsupervised domain adaptation beyond label shift
Open this publication in new window or tab >>Unsupervised domain adaptation beyond label shift
(English)Manuscript (preprint) (Other academic)
National Category
Probability Theory and Statistics
Identifiers
urn:nbn:se:umu:diva-230172 (URN)
Available from: 2024-09-30 Created: 2024-09-30 Last updated: 2024-10-01
4. Vignette DNNcausal
Open this publication in new window or tab >>Vignette DNNcausal
(English)Manuscript (preprint) (Other academic)
National Category
Probability Theory and Statistics
Identifiers
urn:nbn:se:umu:diva-230173 (URN)
Available from: 2024-09-30 Created: 2024-09-30 Last updated: 2024-10-01

Open Access in DiVA

fulltext(888 kB)142 downloads
File information
File name FULLTEXT01.pdfFile size 888 kBChecksum SHA-512
e6f496bab81a00d74b59756ab1eac4ebc6aa87b8560c5fdaeddb778a82bb93ce4340a9fcf7489b899b49f6313798531b1769e79cde6870202300a9f9c8970e6f
Type fulltextMimetype application/pdf
spikblad(127 kB)42 downloads
File information
File name SPIKBLAD02.pdfFile size 127 kBChecksum SHA-512
6f869fb89c2455c1b30067b6534b829a6e0f16579b67b6bdfd05280282510cd5f0466f9f5794db693a5ff56a16ac6a526842e71ce9d3b022fc7e627173a1c879
Type spikbladMimetype application/pdf

Authority records

Mohammad, Ghasempour

Search in DiVA

By author/editor
Mohammad, Ghasempour
By organisation
Statistics
Probability Theory and Statistics

Search outside of DiVA

GoogleGoogle Scholar
Total: 142 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

isbn
urn-nbn

Altmetric score

isbn
urn-nbn
Total: 392 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf