Umeå University's logo

umu.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Properties of cement raw meals used as sorbents in a calcium looping process
Umeå University, Faculty of Science and Technology, Department of Applied Physics and Electronics. Heidelberg Materials Cement Sverige AB, Stockholm, Sweden.ORCID iD: 0000-0002-4219-1226
Umeå University, Faculty of Science and Technology, Department of Applied Physics and Electronics. Heidelberg Materials Cement Sverige AB, Stockholm, Sweden; Swedish Mineral Processing Research Association – MinFo, Stockholm, Sweden.
Umeå University, Faculty of Science and Technology, Department of Applied Physics and Electronics.ORCID iD: 0000-0003-1095-9154
Umeå University, Faculty of Science and Technology, Department of Applied Physics and Electronics. Swedish Mineral Processing Research Association – MinFo, Stockholm, Sweden.ORCID iD: 0000-0002-8230-8847
2024 (English)In: Chemical Engineering Journal, ISSN 1385-8947, E-ISSN 1873-3212, Vol. 499, article id 156165Article in journal (Refereed) Published
Abstract [en]

Calcium looping (CaL) is a promising carbon capture and storage (CCS) technology that has the potential to significantly reduce CO2 emissions in cement production. Integrating CaL with cement production provides a viable solution to the high CO2 emissions generated during the calcination process. This study examines the behavior of two industrial cement raw meals from different sites (A-RM and B-RM) under CaL conditions, focusing on phase composition, particle size distribution, and clinker phase evolution up to 1450 °C. Calcination and CaL experiments were conducted in a CO2-rich atmosphere, with materials characterized using quantitative X-ray diffraction (Q-XRD) and high-temperature X-ray diffraction (HT-XRD). The results showed that both raw meals absorbed similar amounts of CO2 during the cyclic CaL experiments. A-RM formed C2S and other silicates, while B-RM retained more free CaO due to a less effective reaction with coarser quartz (SiO2) particles. HT-XRD revealed delayed clinker-phase evolution in the 1000–1400 °C range in CaL-treated raw meals. However, CaL-treated raw meals achieved low free CaO at 1450 °C, suggesting that optimal kiln conditions can produce the desired phase composition. These findings indicate that integrating CaL-treated raw meals into cement production requires careful optimization of operational parameters to maintain clinker quality and minimize energy consumption. Further research should focus on improving the efficiency and reactivity of CaL-treated raw meals to enhance their suitability for industrial cement production.

Place, publisher, year, edition, pages
Elsevier, 2024. Vol. 499, article id 156165
Keywords [en]
Calcium looping, Carbon capture, Cement clinker, Cement raw meal
National Category
Chemical Engineering
Identifiers
URN: urn:nbn:se:umu:diva-230845DOI: 10.1016/j.cej.2024.156165ISI: 001333038400001Scopus ID: 2-s2.0-85205584222OAI: oai:DiVA.org:umu-230845DiVA, id: diva2:1906502
Funder
Swedish Energy AgencyEuropean CommissionAvailable from: 2024-10-17 Created: 2024-10-17 Last updated: 2025-04-24Bibliographically approved
In thesis
1. Cement clinker formation in concentrated carbon dioxide atmospheres: mineralogical and reactivity insights
Open this publication in new window or tab >>Cement clinker formation in concentrated carbon dioxide atmospheres: mineralogical and reactivity insights
2025 (English)Doctoral thesis, comprehensive summary (Other academic)
Alternative title[sv]
Cementklinkerbildning i koncentrerade koldioxidatmosfärer : fördjupade insikter i mineralogi och reaktivitet
Abstract [en]

The research presented in this thesis investigated cement clinker production, and involved replicating the conditions of electrified kilns using plasma heating and emerging technologies such as oxy-fuel combustion and calcium looping. These technologies aim to address key challenges in sustainable cement manufacturing by enabling carbon capture and improving process efficiency, and involve the use of high-CO2 atmospheres.

Reliable experimental and analytical methods, including high-temperature X-ray diffraction with controlled atmospheres, were developed in order to study the calcination behaviour, burnability, and phase evolution of raw meals. The key findings were that high-CO2 conditions shift the calcination temperature, decomposition, and modification of intermediate phases, and enhance the reactivity of key phases such as C2S. Accelerated C2S formation and spurrite decomposition play a critical role in improving burnability and C3S formation, reducing reliance on free lime as an intermediate.

Optimised raw meals with improved fineness and tailored chemical compositions demonstrated superior burnability and enhanced clinker reactivity as compared to conventional industrial samples. These results indicate the potential for improving raw meal formulations in order to meet the demands of conventional and emerging processes.

However, challenges persist in managing sulphur volatilisation, and alkali dynamics under high-CO2 conditions. This study emphasises the importance of addressing process factors such as material flow, heat transfer, and kiln volatilisation for ensuring industrial scalability. 

The findings of the simulation of calcium looping conditions highlight that carbonation efficiency and clinker phase formation depend on factors beyond C2S reactivity, including particle sintering and temperature dynamics.

This work provides critical insights into the implications of high-CO2 atmospheres for clinker production, offering valuable guidance for developing electrified and decarbonised cement processes. The research lays the foundation for producing durable cement in a sustainable way, with a view to reaching global climate goals by bridging the gap between laboratory-scale studies and industrial applications.

Abstract [sv]

Cementindustrin, står inför stora utmaningar i strävan efter hållbar produktion eftersom den bidrar till cirka 8 % av världens totala koldioxidutsläpp. Majoriteten av utsläppen kommer från de kemiska reaktionerna vid upphettning av kalksten samt från de fossila bränslen som används i tillverkningsprocessen av cementklinker. Trots framsteg med användning av alternativa bränslen, alternativa råmaterial och cement-ersättningsmaterial är det oundvikligt att framtidens lösning måste innefatta infångning och lagring koldioxid (CCS) direkt vid fabrikerna.

Denna forskning syftar till att skapa en djupare förståelse för hur nya CCS teknologier så som elektrifierad plasmauppvärmning, oxy-fuel-förbränning och kalciumlooping påverkar klinkerbildningen under cementtillverkning. De höga koldioxidnivåerna som dessa teknologier genererar skapar dock nya processförhållanden vars påverkan på klinkerbildningen måste förstås för att teknikerna ska kunna utvecklas effektivt och säkert.

För att undersöka effekterna har avancerade experimentella metoder utvecklats, inklusive högtemperaturröntgen, som används för att studera hur råmaterial reagerar vid upphettning och vilka mineraler som bildas i cementklinkern. Resultaten visar att höga koldioxidhalter påverkar kalkstenens nedbrytning, förändrar mineralutvecklingen och ökar reaktiviteten hos nyckelmineraler som C2S (dikalciumsilikat). Detta leder till effektivare processer, där faser i råmaterial och mellanprodukter vid hög temperatur reagerar snabbare och bryts ner mer effektivt.

Avhandlingen betonar även vikten av att optimera råmaterial för att anpassa sig till de förändrade förhållandena. Genom att justera sammansättningen och partikelstorleken har studien visat att brännbarheten hos råmaterialen och reaktiviteten hos cementet kan förbättras. Detta innebär att cementet kräver mindre energi att tillverka samtidigt som det får bättre egenskaper för användning i kombination med tillsattsmaterial. 

Vid simulering av kalciumlooping-processen framkom att karbonatiseringens effektivitet och klinkermineralbildning påverkas av flera faktorer, såsom partikelsintring och temperaturdynamik. 

Denna forskning ger värdefulla insikter i hur framtida tillverkningstekniker påverkar klinkerbildningen. Resultaten bidrar till att möjliggöra en säker och effektiv utveckling av nya teknologier som kombinerar elektrifiering och koldioxidinfångning. Detta kan minska cementindustrins klimatpåverkan och bana väg för en cementproduktion som strävar mot världens klimatmål.

Place, publisher, year, edition, pages
Umeå: Umeå University, 2025. p. 84
Keywords
Portland cement, clinker, phase evolution, in-situ XRD, carbonation, calcination, hydration, carbon capture
National Category
Chemical Engineering
Research subject
Materials Science
Identifiers
urn:nbn:se:umu:diva-235688 (URN)978-91-8070-617-9 (ISBN)978-91-8070-618-6 (ISBN)
Public defence
2025-03-20, KBE301-Lilla hörsalen, Umeå, 13:00 (English)
Opponent
Supervisors
Projects
CemZero RP3 - Carbon dioxide free products based on electrified manufacturing - reactivity of cement clinker with secondary cementitious materialsCemZero RP4 - Carbon dioxide free products based on electrified manufacturing - Fundamental properties of stand-alone plasma and plasma in combination with calcium-based bed materials in rotary kilns.Electrification of high temperature and flexible technologies for transforming cement, lime and pulp industry (ELECTRA)
Available from: 2025-02-27 Created: 2025-02-21 Last updated: 2025-02-21Bibliographically approved

Open Access in DiVA

fulltext(2558 kB)76 downloads
File information
File name FULLTEXT01.pdfFile size 2558 kBChecksum SHA-512
cceb817b60a0de9fdbe7f4d266ed5c455e2972c70feca308a8bfcd4b3c4dd9cedd81614bbb1f1847db2a31e453f5f9884726a832d8bc490757320c6d8bfc385b
Type fulltextMimetype application/pdf

Other links

Publisher's full textScopus

Authority records

Aguirre Castillo, JoséWilhelmsson, BodilBroström, MarkusEriksson, Matias

Search in DiVA

By author/editor
Aguirre Castillo, JoséWilhelmsson, BodilBroström, MarkusEriksson, Matias
By organisation
Department of Applied Physics and Electronics
In the same journal
Chemical Engineering Journal
Chemical Engineering

Search outside of DiVA

GoogleGoogle Scholar
Total: 77 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 195 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf