umu.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Spatial simulation of forest using Bayesian state space models and remotely sensed data
Department of Forest Resource Management and Geomatics, Swedish University of Agricultural Sciences, Umeå, Sweden.
Umeå University, Faculty of Science and Technology, Department of Mathematics and Mathematical Statistics.
2004 (English)In: 7th International Symposium on Spatial Accuracy Assessment in Natural Resources and Environmental Sciences / [ed] M. Caetano and M. Painho, Umeå: Swedish University of Agricultural Sciences, Umeå, Sweden , 2004Conference paper, Published paper (Other academic)
Abstract [en]

Utilizing spatial properties of forest attributes may provide increased accuracy in forestry remote sensing applications, compared to common non-spatial methods. Spatial models are often complex and their inference are usually difficult, though. Such problems may be addressed using Bayesian models, estimated using the computer-intensive Markov-Chain Monte Carlo (MCMC) stochastic simulation methods. This article presents a Bayesian statespace model of forest attributes using field measurements and remote sensing data. The model is defined on a spatial lattice where each lattice cell corresponds to the spatial extent of one raster cell measurement in the remote sensing data. As prior distribution function, the Conditional Autoregressive model (CAR) is utilized since it is well defined for simulation using the Gibbs sampler. The parameters of the CAR were estimated using a variogram model. Inference is provided by the MCMC method Gibbs sampler, a method which allows inference of very complex models. That is, estimation is made by simulating from the posterior distribution (conditional to the available field measurements and remote sensing data). A casestudy is presented where the model is applied to produce a 5917 ha large raster map of forest stem volume using field measurements and Landsat 5 TM data in northern Sweden. This corresponds to estimation of a parameter vector of size exceeding 360 000. The mapping accuracy was assessed using sampled field plots and field measured forest stands, not utilized in the model. Simulations made using Gibbs Sampler did converge to reasonable realizations of the forest, in spite of the very large size of the estimated parameter vector. The general mapping accuracy was low, though, 76.1% root mean square error (RMSE), in per cent of the mean, for raster cell (25 by 25m) predictions, and 60.5% RMSE for stand (0.5 – 22.1 ha) predictions. The methodology shows substantial potential although further development of the model would clearly be beneficial.

Place, publisher, year, edition, pages
Umeå: Swedish University of Agricultural Sciences, Umeå, Sweden , 2004.
Keyword [en]
Markov-Chain Monte Carlo, Gibbs Sampler, Bayesian models, forestry, Remote Sensing
National Category
Probability Theory and Statistics Mathematics
Identifiers
URN: urn:nbn:se:umu:diva-19853OAI: oai:DiVA.org:umu-19853DiVA: diva2:207531
Conference
7th International Symposium on Spatial Accuracy Assessment in Natural Resources and Environmental Sciences
Note

Ingår i Jörgen Wallerman's Ph.D-thesis at SLU, March 2003

Available from: 2009-03-11 Created: 2009-03-11 Last updated: 2014-03-19Bibliographically approved

Open Access in DiVA

No full text

Search in DiVA

By author/editor
Bondesson, Lennart
By organisation
Department of Mathematics and Mathematical Statistics
Probability Theory and StatisticsMathematics

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 64 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf