Change search
ReferencesLink to record
Permanent link

Direct link
Probing Norwalk-like virus presence in shellfish, using artificial neural networks.
Show others and affiliations
2004 (English)In: Water Science and Technology, ISSN 0273-1223, Vol. 50, no 1, 125-9 p.Article in journal (Refereed) Published
Abstract [en]

A database was examined using artificial neural network (ANN) models to investigate the efficacy of predicting PCR-identified Norwalk-like virus presence and absence in shellfish. The relative importance of variables in the model and the predictive power obtained by application of ANN modelling methods were compared with previously developed logistic regression models. In addition, two country-specific datasets were analysed separately with ANN models to determine if the relative importance of the input variables was similar for geographically diverse regions. The results of this analysis found that ANN models predicted Norwalk-like virus presence and absence in shellfish with equivalent, and better, precision than logistic regression models. For overall classification performance, ANN modelling had a rate of 93%, vs 75% for the logistic regression. ANN models were able to illuminate the site-specific relationships between indicators and pathogens.

Place, publisher, year, edition, pages
2004. Vol. 50, no 1, 125-9 p.
URN: urn:nbn:se:umu:diva-20633PubMedID: 15318497OAI: diva2:209186
Available from: 2009-03-24 Created: 2009-03-24 Last updated: 2009-03-24

Open Access in DiVA

No full text

By organisation
In the same journal
Water Science and Technology

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 24 hits
ReferencesLink to record
Permanent link

Direct link